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I-PREFACE

The second task of the first phase of Armour Research Foundation

program 8259, UTILIZATION OF REFRACTORY NON-METALLIC MATERI-

ALS IN FUTURE AEROSPACE VEHICLES, was a "Literature Review of De-

I. sign Techniques and Analytical Methods". The second part of this task, a
critical literature review, is presented here as Volume II of the Final Report

on Phase I - Task 2; "Review of Structural Design Techniques for Brittle

Components under Static Loads". Volumc I, "Literature on Design Tech-
niques and Analytical Methods for Brittle Materials", was issued during

I- April 1963.

The program is being conducted for the Aeronautical Systems

Division, Air Force Systems Command, the United States Air Force under

Contract AF33(657)--8339. The report period is February 1963 to May 1963.
j Mr. R. L. McGuire of the Flight Dynamics Laboratory is Technical Monitor

for ASD.I The author acknowledges the assistance of P.C. Hermann who

proof-read the draft of this report and supervised the preparation of the

final report. Dr. N.A. Weil, Director of Mechanics Research, is over-

all program manager.
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- . , / .- ' ,b,-

R, L Oarnett, Task Leader
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and

nProgram Manager

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

I i



L
!
I

REVIEW OF STRUCTURAL DESIGN TECHNIQUES

j FOR BRITTLE COMPONENTS UNDER STATIC LOADS

j by

IRalph L. Barnett

ABSTRACT

j A systematic review of structural design techniques for brittle

materials is conducted with particular emphasis on statistical fracture

I theories. The properties of both series and parallel statistical models are

discussed, and a critical analysis is given for the experimental data which

is available in the literature. The relationship of extreme value statistics

to the fracture problem is thoroughly exploited. A survey of brittle test

specimens and design rules-of-thumb is included, together with a number

of very promising design philosophies.
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REVIEW OF STRUCTURAL DESIGN TECHNIQUES FOR BRITTLE

l COMPONENTS UNDER STATIC LOADS

I. INTRODUCTION

This report presents a critical and comprehensive review of structural

j design and analysis techniques for materials which behave in a brittle fashion.

In the first volume of this final report, an extensive literature search was

conducted which formed the starting point for the present investigation. A

systematic study of this literature was conducted and the following specific

j objectives were pursued in the presentation of this effort:

1. Report the results of significant scientific investigations of

j brittle behavior from the point of view of the structural designer.

2. Collect significant test results and discuss them in the light

of available mathematical models.

3. Study the implications of popular analysis method to the design

problem.

4. Develop a series of questions which will aid the selection of

suitable methods of analysis.

1 5. Simplify some of the more compact presentations found in the

open literature.

6. Prepare a sufficiently comprehensive report that it may serve as

a springboard to further investigations in "brittle" design.

IDesign philosophies, shortcomings in the current state-of-the-art,

and rules-of-thumb will be found in various places in this document.

Considerable care was devoted to the documentation of source material and

it is hoped that we have been reasonably successful in recording our

acknowledgments.

[
I
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II. PHILOSOPHY OF STRUCTURAL DESIGN

II-A. Deterministic and Probabilistic Approaches to Design

I II-A-I. Structural Design Problem

The problem of structural design is the disposal of material in such

a way that it will, within some level of probability, equilibrate given systems

of applied force under appropriate environmental conditions without exceed-

ing permissible amounts of deflection. Formulated in this way t a solution

to the design problem is not unique and the various possible designs are

called adequate designs to indicate that they merely represent a synthesis
-. which satisfies the functional requirements within the confines of existing

limitations. If, in addition, designs are required to be minimum weight or

minimum cost, we enter the more specialized fields of minimum weight

design or minimum cost design. Because we are at present more concerned

with the feasibility of the widespread use of brittle materials in structures,

rather than efficiency, we are certainly in the area of adequate design.

1The theory of adequate structural design is for the most part con-

cerned with stress or deflection analysis of given structures. This means

that in practice it can only be used in design by a process of trial and error,

in which the structural layout and sizes are first guessed or very roughly

calculated, and are then subjected to as complete analysis as the theory will

permit. The results of these calculations -are compared to some perform-

ance yardstick and on this basis the Various parts of the structure are judged

- to be adequate or inadequate. The design is then modified and the thorough-

going analysis repeated as a check. In the case of a ceramic structure, the

Imaterial would be approximated as linear, elastic, isotropic, and homo-

geneous and a thorough analysis would result in a description of the stresses..

j. strains, and deflections throughout the structurq. Now, two sticky questions

remain: what is the performance yardstick, and how do we modify an inade-

jquate design. We shall at present concern ourselves only with the first

question.

II-A-2. Deterministic Theor,

According to the classical theory, the ultimate strength of a material

is determined by the internal stresses at a point, assuming that by a suitable

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGYI



combination of the three principal stresses or strains a characteristic

value may be computed for the material in question. This value is supposed

to be definitively decisive in judging whether the ultimate strength has been

reached or not. This phenomenological approach attempts to describe the

reaction of a solid to an external stress system by predicting the behavior

of the solid under a triaxial stress state from experimental data obtained

from simple uniaxial tests. The following important phenomenological

theories were reviewed in Reference I in 1952 as possible candidates for

the description of the strength of ceramic materials:

1. Maximum stress theory

2. Maximum strain theory

3. Maximum shear stress theory

4. Maximum strain energy theory

5. Distortion energy theory

6. Internal friction theory

7. Mohr theory
I

8. Stress invariant theory

For materials which exhibit plastic flow (ductile materials), there is con-
I

siderable test evidence (biaxial) to show that the distortion energy theory is

in good agreement with the test results for defining failure by yielding.)Both this theory and the maximum shear stress theory are generally recom-

mended for design when the yield strengths in simple tension and simple

compression are equal. For ductile materials which exhibit a considerable

difference between their tensile and compressive yield strengths, either the

internal friction theory or Mohr's theory give good approximations under

biaxial stress conditions (2) For materials which evidence little or no

plastic flow before fracture (brittle materials), experimental measure-

ments give many results which may hardly be brought to agree with any of

these phenomenological theories.

The validity of the hypothesis that failure can be predicted from

stress conditions in one single point has been doubted for many years(3)

If the hypothesis is correct and one of the eight failure theories can be used,

the designer is in a position to predict the behavior of large structures from

simple uniaxial tests. If none of the eight failure theories can be used, a

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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deterministic approach is still feasible although the question of practicality

assumes serious proportions. One can construct a two-dimensional frac-

ture interaction curve similar to those shown in Figure 1, by plotting the

data obtained from fracture experiments performed with various ratios of

the two principal stresses. In three dimensions most of the corresponding

fracture surface can be obtained from experiment with the notable exception

of the states of triaxial tension. States of triaxial tension which can be de-

Stermined from equilibrium conditions alone are currently unknown, and one

must resort to the theory of elasticity to determine such states of stress,

At best, it is clear that the experimental construction of the fracture sur-

face requires an extensive testing program.

j Let us now consider the case where the hypothesis is incorrect, i.e.,

the strength of a part cannot be predicted from the states of stresses at the

various points. Here, not only does the stress state enter as a strength

parameter, but perhaps, in addition, the size of the part or its shape (stress

gradient) are explicitly involved. Since the range of these additional param-

eters is essentially unlimited, any direct experimental approach to the

development of a general strength criterion would be quite impossible.

However, there are two realistic approaches: (1) develop a theory which

accounts for the effects of stress state, size, shape, temperature, etc., or

(2) conduct service tests on each structural component. We shall comment

further on these two approaches after we introduce a further complication.

II-A-3. Statistical Theory

All of the above remarks have been directed toward a deterministic

concept of material behavior. We shall now introduce a statistical point

of view into the design problem by considering any simple strength test re-

peated sufficiently often with nominally identical specimens. The resulting

ultimate strengths will show a scatter caused by many unknown factors, The

designer has never concerned himself with this scatter in ductile design

since the range of yield strengths obtained from, say, a thousand tests is so

small that one can predict the value of the 0O01st test with great confidence.

On the other hand, with brittle materials the dispersion of results is so

large that even with the thousand test results available, little of firm value

can be said regarding the strength of the 1001 st test, other than the

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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statement that its fracture stress must be non-negative. If, on the other

hand, we consider another group of 1000 specimens, we might ask if thel'e

is not some relationship between this group and the original. Indeed, the

entire foundation of statistics depends on the existence of such a relationship.

Since we cannot predict the result of an individual test, we are forced to

compromise by predicting only the behavior of a group of tests. One would,

therefore, hope that the average stress in the original group of 1000 speci-

mens would be reproduced in subsequent groups of specimens. To be

really useful it would be desirable to predict the entire distribution of

strengths in subsequent groups of tests. Here, however, we must again

accept a compromise in predicting even the behavior of a group since the

distribution of strengths can only be estimated when the sample tests are

finite in number. Before we deal further with these questions, let us look

a little deeper into the nature of the dispersion of fracture strengths.

There is a mechanistic approach to the theory of fracture which

analyzes strength properties from the point of view of what makes the ma-

terial fail. These theories are relatively new, and are concerned with the

fact that materials may fracture at stresses 100 to 1000 times below their

theoretical breaking strengths. The presence of defects in the material

such as cracks, dislocations, and other possible flaws is postulated to ac-

count for these disparities. This implies that the strength of a brittle ma-

terial is determined by a state of stress prevailing within a very small

volume whose individual properties determine those external forces at which

the ultimate strength is reached. This view is based on a conception set

forth by Griffith( 4 ) and later developed by Smekal ( 5). Griffith developed his

theory in an attempt to explain the extraordinary weakening of materials by

surface scratches whose areas were but a minute part of the cross sectional

area of the material. He assumed that the scratches or cracks acted as

stress concentrators and that, at their extremities, the stress reached ap-

proximately the theoretical strength of the material. The calculations of

Inglis ( 6 ) were used to determine the stresses and strains resulting from

typical scratches. The predictions of these calculations were borne out by

tests on glass fibers. It should be pointed out that although the mechanistic

theories postulate a mechanism of fracture, they still require an

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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assumption of the criterion for fracture, as do the phenomenological theo-
ries. Fracture still is considered to occur at some condition of stress or

strain; however, the mechanistic theory has the advantage of providing a

description of fracture phenomena.

The Griffith theory raises the question of how many flaws are con-

tained in a specimen. Since Griffith's theory assumes that failure takes

place at the most critical flaw in a random distribution of flaws, the large

Iscatter of tensile strengths obtained from brittle materials would indicate

that the number of critically oriented cracks cannot be very large. On the

I other hand, it can be deduced from Smekal's (7 ) work on glass rods that the

total number of flaws is quite large. Smekal found that glass rods broken

in tension form a mirror surface which initiates at a critical flaw. Extend-

ing from this flaw, the smooth surface gradually gives way to a rough one.

He explains this behavior as a slow initial fracture which creates a mirror

surface in a plane normal to the applied stress followed by the propagation

of lesser flaws due to the transfer of stress which results from the decreased

cross section caused by the initial fracture. These secondary flaws even-

tually run into the initial fracture surface creating an area of increasing

j roughness. The important implication of these works, from the design

point of view, is that the strength of a specimen must decrease with size due

to the greater probability of its containing a critical flaw.

The size effects on brittle fracture have been noted for glass by

j Griffith (4) Weibull 8 ), and Smekal ( 9 ), for gypsum by Duckworth(1) and
(10) .(l1) (12)Patton and Shevlin for porcelain by Weibull I Milligan , and

Bortzl 3), for steel at low temperatures by Davidenkov (14), and for

aluminum oxide and magnesium oxide by Bortz( l 5). These studies, as well

as work by others, give credence to the flaw hypothesis and, in addition,

point up the inadequacy of the classical theories which predict a unique

strength independent of the specimen size.

II-B. Implications of the Statistical Approach to Design

I-B-I. Existence of a Distribution Function

14 in an array of experimentally determined data, we plot the fre-3 quency with which each value is observed against the value itself, we have a

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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means of showing the relative frequency with which we may expect a partic-

ular value to occur. Such a plot will usually show the frequency rising to

a maximum figure at some point and falling off again as we move from left

to right. Extreme values do not occur as often as those near the center,

The curve may or may not be symmetrical about the maximum frequency.

A mathematical expression of this curve is called the frequency distribu-

tion, or the probability density function, and shall be denoted by f(x). Fig-

Lures 2(a, b, c) are three such frequency curves,

By proper normalizing of the density function, the total area under[ the curve between its limits can be made to become unity, and by integrating

this latter expression, we obtain the cumulative probability function, or,

more simply, the distribution function, which we denote by F(x). Thus, a

frequency function for a continuous random variable x possesses the follow-

jing properties:

C .f(x) . .. frequency function (1)L
f(x) dx 1 (2)

af(x) dx P a<x<bT (3)

F(xo) = P !X} f(t) dt monotonically (4)
"-00 non-decreasing

j f(x) F'(x) (5)

where P y Lx 0 is the probability of choosing at random an individual

j event having a value of x equal to or less than xo, and where a and b

are any two values of x with a< b.

Property (1) is obviously necessary since negative probability has

no meaning. Property (2) corresponds to the requirement that the probabil-

ity of an event that is certain to occur should be equal to unity, We see that

by using the distribution function F(x), it becomes possible to estimate the

probability that an individual occurrence (x) will be equal to or less than

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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any assigned level of interest. Given this function for the strength of a

particular component, a designer could select a design stress correspond-

ing to any desired probability of failure from iero to 100 percent. Figures

I 3 (a, b, c) show the cumulative probability curves ior the respective fre-

quency distributions indicated in Figures 2 (a, b, c). It will be noted that1 the cumulative probability curve is, in general, an ogive in form, approach-

ing or passing through ,:ero (absolute impossibility) at one extreme and

I asymptotically approaching the value of uuiity (absolute certainty) i.t the

other.

j Because the existence of a cumulative distribution function is the

most important assumption of any statistical theory, we shall briefly in-

quire into the meaning of existence. If we consider the diameter of apples

and oranges as a statistical variate, we shall find that each of these fruits

has a different probability distribution. A fifty-fifty mixture of these fruits

has a distribution of diameters and using conventional techniques they can

be classified and plotted as a cumulative distribution curve. This curve will

jof course be differentf o:-, the curves for oranges alone or apples alone. If

another distribution curve were constructed for a 40-60 combination of the

jfruits, this curve would be different from any of the others. In general, the

distribution curves for the oranges alone and the apples alone would suffice

to determine the distribution curve of a known combination of the fruits;

however, if the proportions are unknown, one cannot find the distribution

curve. The situation is even more hopeless when we try to predict the dis-

tribution curve of an unknown combination of fruits having available only the

distribution curve of an unknown randomly selected combination.

We shall consider a distribution curve to exist for a population when

every infinite sample taken from the population has the identical distribution

function. From a practical standpoint, we can consider a distribution curve

to exist when various large subsets of a large sample all give practically the

same distribution cu.'ve.

Based on the author's conversations with leading investigators in the

I field of ceramics, it would appear that n-any manufacturers of ceramics

produce materials which vary from-, day to day, batch to batch, and some-I
ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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1..
times item to item. Sufficiently large variations in the composition and/or

treatment of a material precludes the existence of a single material popula-

tion, and hence, the existence of a distribution function. There are several

instances in the literature where there is considerable doubt concerning the

validity of the population samples studied, and this doubt demands that at-

tention be directed to this matter for every new material investigated.

II-B-2. General Conments on Distribution Functions

In Fi,,ures 2c and 3c we observe that in the Weibull distribution

both the variate and the distributions are limited on the left at the value

zero. Indeed, there is a form of the Weibull distribution which accounts for

a limited variate on the left and right for any real values. If such a distri-

bution were obtained for the strength of a part, the lower limit would

have the significance that parts stressed at or below this level would never

fail. If we accept Griffith's flaw hypothesis, the question of whether ou

cquala "ero or a finite value is equivalent to questioning the existence of a

limiting intensity of a flaw. If such a limit exists, a conservative design

procedure might be to assume a uniform saturation of such critical flaws

throughout a structure. In trying to detect the presence of a finite ou in

various test results in the literature, one is concerned with the existence of

residual stresses which are known to cause failure without the application of
extenalloaing(16)

external loading(1,and the fact that many of the lowest strength speci-

mens are ruptured during manufacture or subsequent handling and never get

to the testing machine.

Many useful distributions in statistics are based on unlimited vari-

ates. Here "common sense" revolts at once and practical people will say:

"Statistical variates should conform to physical realities, and infinity tran-

scends reality. Therefore, this assumption does not make sense. " This

objection is not as serious as it looks, since the denial of the existence of an

upper or lower limit is linked to the affirmation that the probability for ex-

treme values differs from unity (or from zero) by an amount which.becomes

as small as we wish.

To construct a distribution curve for the strength of a given compo-

nent, we would theoretically require an infinite number of tests of the

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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component. When we use a finite number of tests we obtain the typical

curve shown in Figure 4. This figure, taken from the excellent report by
Salmassy '1 , indicates that the rareness of extreme events precludes a

I good definition of the upper and lower limits of the distribution curve. On
the other hand, high reliability demands that the designer concern himself

I with the very low probabilities of failure associated with the lower limit of
the distribution curve. The alternative to a very extensive testing program

is to find a mathematical description of the distribution function which pro-

perly describes the available data, and then use this to determine the

stresses associated with low probabilities. Indeed, this is the only possible

procedure for finding the zero probability strength, i.e., the stress cor-

responding to zero probability of fracture

One of the tools for finding the correct description of a probability
curve is probability caper. By a suitable transformation of the probability

scale in a cumulative probability plot, special graph papers may be con-
structed so that in many cases the cumulative probability curves will plot as
straight lines This has the obvious virtuc that extrapolation becomes quite

easy, This point is illustrated in Figure 5, where the same distribution curve

is plotted using a cartesian scale and using a Weibull scale. We note that the
conventional distribution curve cannot be used to predict the zero probability

I strength o'u = 10, 000 psi. A second feature of probability paper is that it can
be used to select the proper distribution function Figures 6a and 6b, taken
from Gumbel (1 8) . show how the first Laplacean and the normal distributions,

which are indistinguishable when plotted conventionally, are separated on
normal probability paper. Probability paper is extremely useful in determinirg
the existence of certain types of distribution functions. The normal probability

plot of thirty I. 0. scores in Figure 7 shows three straight lines indicating
j that the data arise from different normal universes having different averages -

the scrambling together of three distinctly different sets of data. If theI lines were not approximately parallel as shown, this would indicate a

probable difference in the precision (reproducibility) of the three sets of

data as well as in the averages. As an additional example, consider the

fatigue life of an ST-37 steel which was described by Weibull ( 1 9 ) , The fre-

quency curve for the steel is shown in Figure 8a, and the associated
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distribution curve plotted on Weibull scales is shown:in Figure 8b. The bi-

linear curve labeled NI+ 2 represents a mixed universe composed of two

populations which each follow a Weibull distribution. No indication of this

so-called "complex distribution" is evident from the frequency curve.

Kao ( 2 0 ) has presented a graphical technique for unscrambling these complex

distributions so the mixed parameters may be estimated.

Probability paper is used extensively in the study of extreme values

since it provides a simple graphical method of testing the fit between theory

and observations without bothering with troublesome calculations. It may

also be used as a criterion for the acceptance or rejection of extreme obser-

vations. The paper by Lewis (21) provides a good introduction to the use of

probability paper; an extensive treatment can be found in Gumbel

In all of the foregoing discussions, it has been assumed that the dis-

11 tribution curve was derived from a series of tests on bodies of the same size

and shape and under exact service conditions, such as temperature, loading,

atmosphere, etc. The present knowledge of brittle materials indicates that

the mean fracture stress may be affected significantly by such factors. Since

the mean stress is a point on the distribution curve, this would indicate that

the entire distribution curve may be affected by such factors. Unless the

influence of these various factors on the distributinn curve can be reasonably

predicted, the designer will be required to conduct a series of service tests

on each structural component in order to obtain the proper distribution curve

needed in the design of the structure.

II-B-3. Statistical Input-. Statistical Output

It is the goal of any design procedure to predict the behavior of rela-

tively complex elements from the characteristics of one or just a few simple

elements. Specifically, in the case of brittle materials which are statistical

in their behavior, we seek a way to derive the probability of survival of a

brittle structure under service conditions from data obtained from a simple

statistical test. The implication is, that any analysis will at best be able to

predict the behavior of a large number of structural elements. The behavior

of an individual element still cannot be predicted with any degree of certainty.
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Having the survival probability of a structure, the designer is able

to predict either:

1. The number of service failures, or12. The number of prototypes required to produce one prototype

which is satisfactory (return period).

I In this latter situation, one must have some means of selecting the

good part.; from the bad, i.e., a service or proof test must be performed on

j the various p,!atotypes. If the loading conditions are exactly known and the

proof test does not damage the one (on the average) good prototype of the

I group, the resulting structure is 100 percent reliable. It would be reason-
able, with this latter procedure, to design parts with a probability of sur-Ivival o; say, 10 percent, i.e., one good part out of ten. Using the first

procedure, one would have to design an aerospace component for an ex-

tremely high survival probability of, say, one chance of failure in 100 or in

1000. Referring to Figure 4, the first procedure would then call for a design

stress of about 50. psi, whereas i 1 th attei' p-oceciu-e the design stress is

I 2150 psi.

If we can predict the probability of failure of a structure from the

behavior of a simple test, we can relate this probability to any parameter of
the structure, such as the working stress, an effective thickness, or perhaps

the total weight. This enables the designer to make a rational compromise

between the parameter chosen and the survival probability. When the param-

j eter chosen is a statistical variate (perhaps the ultimate load of the part),

the relationship between the parameter and the survival probability is pre-

[ cisely a distribution function for the structure.

II-B-4. Series and Parallel Elements

If an element of a structure fails, the entire structure either fails

or does not fail. The first type of element, like the link in a chain, limits

the strength of the structure to that associated with the failure load of the

element. Such elements are called series elements. The second type of

element, called a parallel element, may or may not contribute to the strength

of the structure; but it does not necessarily limit the strength of the overall

structure to that of the element. An example of a parallel element is a
ctrand in a cable.
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The treatment of series and parallel elemo".is is entirely different,

and for this reason we will study each separately. However, to quote
Epstein(2 2 ) , "In any real problem the situation is probably neither that of

I elements in series or in parallel, but rather elements distributed in some
rather complicated arrangement. "1 In the authorIs opinion, the fact that the
state of the art does not provide a method for dealing with the combined

parallel-series problem represents the single greatest shortcoming of

[ statistical strength theory.

20-
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I
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III. SERIES MODEL

III-A. Heuristic Approach

III-A-1. Chain Model

Assume that we have a chain made up of n nominally identical links.

If we have found, by testing, the probability of failure S at any load x ap-

plied to a single link, and if we want to find the probability of failure S oft n

the entire chain, we have to base our deductions upon the proposition that

the chain as a whole has failed if any one of its parts has failed. Accord-I

ingly, the probability of nonfailure of the chain, (1-S n), is equal to the

probability of the simultaneous nonfailure of all the links. Thus we have,

(I - Sn) (1 - S) n  S(x) ... distribution function of link (6)

For a very reliable chain we want the probability of failure S to be small;

consequently, we must use low values of the load x so that the probability

of failure S(x) of each link is small. For small S, Eq. 6 becomes

(1- S n ) 1 - nS or S Sn (7)

. Thus, we find the alarming fact that for a large reliable chain the probability

of failure of the links must be very, very small. We observe that when

n - , S(x) -> 0; hence, in this situation a design is possible only for a

distribution function S(x) which is limited on the left, i. e. only if S(x) = 0

gives x = xu >0, where xu is the zero probability strength below which no

failure can occur.

1. To get a feel for the implications of this model, we will assume that

a structure is made up of elenents which act like the links of a chain. A low

A
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guess for the ratio between the volume of a typical structure and the gage

volume of a typical bending or tension specimen is 1000; hence, let

n = 1000. Now, even if we are willing to accept nine bad prototypes for

every good one, we must still choose a design stress low enough so that

only one specimen fails in about every lOuM. When we try to read off a

j probability of only 0. 001 from a typical distribution curve such as that

shown in Figure 4, we meet with great difficulties. This points out very

j clearly the importance of having a well-defined lower portion of the distri-

bution curve. Furthermore, we can observe from Figure 4 that for low

probabilities a small decrease in the probability of failure corresponds to a

large decrease in stress. Thus, we find that the total weight of a structure

increases very rapidly for a small increase in reliability. Finally, if we

now use a test specimen which is 50 times as large as that assumed in the
beginning of this example, we get n = 20, which means that an Sn = 90%

I requires that S - 5%. At the 5% probability level, the probability curve in

Figure 4 has very good definition.

I We can summarize the results of this simple chain model as follows:

(1) Reliable design calls for a well defined lower portion of the

j distribution curve.

(2) Very large structures are not possible unless a zero strength

I exists.

(i) Bigger specimens are better specimens.

(4) Large reliable structures in brittle materials must work at low

tensile stress levels and will consequently be heavy.

(5) A small increase in reliability calls for a large increase in weight.

III-A-2. Design Procedure Based on a Weakest Link Model

j If we assume that the various elements of a structure are series
elements, we can generalize slightly on the chain model previous discussed,

and develop a general design procedure. This procedure will be conserva-

tive in the sense that we are assuming the strength of the struciure to be

limited by either a series or a parallel element. We shall make two addi-

tional assumptions. First, we assume that the probability that rupture

occurs in a given volume subjected to any uniform stress may be completely!
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L
determined by a quantity x which may be calculated from the three princi-
pal stresses. Second, we assume that the various distribution functions

1 used in the procedure exist and are obtainable in at least graphical form.

Now, consider a structure subjected to an environmental history of

load and temperature.

I. Divide the structure into n convenient volumes V 1 , V 2 1 ... Vn.

j A. Make as many volumes identical as possible.

B. Choose statistically homogeneous volumes.

C. Contain "special conditions" in separate volumes (such as

. stress concentrations).

II. Determine the critical generalized stress x for each volume and

-. for each environmental condition (loading, temperature, atmos-

phere, etc.).

III. Taking the critical stress to be uniformly distributed throughout

its associated volume, determine the probability curve for each

Vi under each environmental condition.

A. Determine Si(x) by testing the assumed element, or

B. Determine Si(x) using simple tests and theory.

IV. Determine the largest probability of fracture for each volume,

SI, S2 .... S., using the various x's and probability curves.

[ V. The probability F that the structure will survive the entire en-

vironmental history is given by

1 - F =n -S i )  (8)
1 ;. '

We note that the division into volume elements may be carried out in

any manner and that the number of elements n may be finite or infinitely

great. We note further that the assumption that x be taken as uniform

throughout each volume is conservative for finite volumes and exact when

the volumes are taken infinitely small. Finally, we observe that the

I. probability of failure of an element depends only on the stress acting on the

element and in no way depends on the conditions which exist in neighboring
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volumes. For example, we see that the problem has been formulated in

such a way that the probability of fracture of the structure does not depend

explicitly on the stress gradient.

III-A-3. Weibull's Theory

111-A-i-a. Development

Using Griffith's flaw theory as a starting point, Weibull rea-

I soned that there would be a distribution of strengths in a given specimen in

the sense that a different amount of force will be needed to fracture a speci-

men at one or another point. This reasoning is, of course, purely concep-

tual in nature since one cannot actually test the strength of an isolated

element without changing the conditions which exist when the element is

actually in the body. If one assumes that the flaws are distributed at random

with a certain density per unit volume, then the statistical formulation of the/. problem becomes apparent. If the flaw concept is accepted then the strength

of a given specimen is determined by the weakest point in the specimen

I since it is assumed that a running crack develops here which destroys the

entire body.

Beginning his reasoning with the simple chain, Weibull observed

that for infinitely small links or volumes, the probability of failure S be-

I comes infinitely small; hence, Eq. 7 can be written exactly as

S n =S (9)

This equation means that the probability of rupture of the entire body is

proportional to the volume. Consequently, the distribution function for an

infinitely small volume dV may be written

S = g(x) dV (10)

Digression:

Weibull states that, "the only conditions which this formula must

fulfill is that g(x) is finite and dV is infinitely small. " However, it is

quite clear that the product g(x) dV must also be dimensionless since it

represents a probability. This may be accomplished by treating g(x) as di-

mensionless and dividing the product by a unit volume. Then, V may be
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interpret,,d a. the number of unit volumes and this interpretation will be

used throughout this report.

Remembering that Eq. 8 is valid when n is either finite or infinite, we

rewrite this equation as

log(1 - F) = log(1-S i ) (11)

-. When n increased indefinitely, Si converges to zero, and consequently,

lol; (I - Si)- - Si. Then Eq. II becomes

log (I -F) = -lim Z Si (12)
iI-" i=1

Now, using Eq. 10, we obtain

log(I - F) = -fg (x) dV (13)

The function g(x), which is essentially the probability distribution of a unit

1. volume, is determined by the distribution constants of the material. There-

fore, for a nonhomogeneous solid, g varies from point to point. Further-

more, the argument of g, the generalized stress x, will in general vary

from point to point depending as it does on the stress distribution in the

solid.

Now, according to Eq. 13, the distribution function becomes
-B

F(x) = 1 - e (14)

where B, the "risk of rupture", is

B(x) = Jg(x) dV (15)

It is now necessary to specify the function g(x). Consider the case

of a homogeneous solid subjected to a uniform stress. Here, Eqs. 14 and

15 assume the simple form

F(x) = 1 - e V.g(x) (10)

Referring to the properties of distribution functions outlined in Section

II-B-l, we can obtain the properties which g(x) must satisfy:
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F (x)> 0 e V' g(x)- = g(x) >0 (17)

i F'(x)>0 ' g'(x)>0 (18)

For reasons considered in previous discussions, it is also desirable that

jthe distribution function be limited oa the left, i.e., F(xu) = 0, where

xu _0. The simplest function satisfying these conditions is the following

one suggested by Weibull (11 )

9() x - Xu , x>xu
g(x)=(Xo (19)

= 0 , x< xu

where xu, xo, and m are constants associated with the material. If V is

set equal to unity, we find the cumulative distribution function for a unit

volume is given by, m

j F(x) = (2- e (20)

and the associated unit probability density function, by

r n -1 . - X u ~ rndF n__ (x - Xu ) 1 ( - (21)

& - e0 oII -~)= o oe(l

The only merit of this distribution function, according to Weibull( 1 9 )

is to be found in the fact that it is the simplest mathematical expression o.
the appropriate form. Experience has shown that, in many cases, it fits

j observations better than other known distribution functions.

III-A-3-b. Properties of the Weibull Distribution

I Given the Weibull distribution

SF (x) 1 - eB x xu (22)

0 x <xu

I where

B (x) = f XXu dV, (23)
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the mean value xm of the generalized stress x is found from the first

moment of the probability density function about ero; thus,

xm = xf(x) dx J xdF = xu + e'Bdx (24)

U The variance a z of the frequency distribution for x is found from the

second moment about the mean xm; therefore,

a2 = 2 f(x) dx = x - xm) 2 dF = Bd(xz + -x 2 (25)

From the definition of g(x) given :y Eq. 19, it is clear that the con-

stant xu is the zero probability strength, i. e., the strength below which

L the probability of fracture is zero. The constant x0 usually serves merely
as a scale parameter; however, there is one situation where a physical

meaning can be given to this constant. Let us consider the case of a uni-

formly stressed body with xu = 0. If m is allowed to approach infinity,
j the risk of rupture B has a value of zero from. zero stress to xo; here it

has the value unity; and from x. on it has an infinite value. For this case,
xm is ox6 00

xm = J0 dx + 0'dx = x o  (26)

0
where the point x0 has been removed from the integration interval. The

associated variance is

fI2 2 2a 2  d(x 2- 0.d(x-) - X0 = x0 - x 0  0 (27)

Thus, we find that when m approaches infinity there is only one value of
the breaking strength, xo . This value apparently corresponds to the ulti-

mate strength in classical theory since it satisfies the conditions that rupture

occurs as soon as the stress in any point of the body, irrespective of its di-

mension, has reached a certain determined value. According to this sta-

tistical conception, it is precisely a j 0 that constitutes a criterion of the
invalidity of the classical theory of strength.
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The constant m, called the flaw density exponent, has been shown by

Meyersberg ( 3 ) to be an index of the relative number of flaws in the mater-

ial. The greater the value of ni, the greater the number of flaws per unit

volume. As the number of flaws per unit volume increases, so does the

probability that there will be a flaw of maximum severity iii every unit

1 volume of the material. If a unit volume of material is subjected to stress

and if fracture is initiated in this volum e, it will initiate at the most severe

1. flaw. Then, since the theoretical strength of a material (no flawsj may be

considered constant, it can be seen that the *fracture stress of a unit volume

is a measure of the stress concentration of the most severe flaw in that unit

volume. Hence, it can be seen that, as the number of flaws per unit volume

increases (m value increases), the narrower the distribution curve becomes,

Ithat is, the less scatter in fracture stresses becomes. Usually, the less

scatter that a material exhibits, the more homogeneous it is considered.

It should be noted that the material constant m might better be conceived

as reflecting changes in both the number and severity of flaws since one ma-

terial might contain flaws of more widely ranging severity than another

material in addition to a larger or fewer number of flaws per unit volume.

In Table I taken from Salm assy 17) typical values for the material constant
m are tabulated.

IThe constants xu, x 0 , and m are assumed to be constants of the

material; and consequently, their determination should be possible from any

size specimens. This fact can be used for the verification of the Weibull

distribution function. Another useful tool for checking the theory is the fact

that no observed value of the fracture stress should have a value below xu.

1 Table 1

FLAW DENSITY EXPONENT

Material Material Constant, m

Glass fibers 1.3 >iJ >
Nickel-bonded titanium carbide KI51A 7 r
Hydro-Stone plaster 15 i ou
Steel at temperature of liquid air 24 "0 . .

Champion's porcelain 35 0 0 0

Steel 58 N 0

Classically perfect material 00
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III-A-3-c. Some Important Results

III-A-3-c-i. Zero Probability Strength is Zero (x,, = 0)

I Take two similar objects of volumes V1 and V 2 . Let x1 be the

generalized stress at some location in V1 and let x 2 be the corresponding

stress in V2 , The relation between these stresses for the same probability

of failure is found by equating F1 (xl) = F 2 (x 2 ) from which it follows that

dV = dV (28)

Because the two bodies have similar loadings and geometry,

X2 v(.. VIm (29)

where the x's may be taken as the average fracture stresses. Once more,

as in the chain model, we find that the strength x 2 approaches zero as V 2

becomes indefinitely large.

Not only can Equation 29 be used for the determination of m when

test results from two different size similar bodies are available: but,

when m is known this equation provides an excellent design tool. For ex-

jample, models of volume V, are constructed and tested for their ultimate

failure load, Pl. We would then have the distribution curve for the loads

[ Pl. Then, using Eq. 29, the fracture load corresponding to any probability

for the volume V2 would be given by

l P2  P 1 (v/v 2 )(m"" (30)

where P1 is chosen at the probability level desired in P 2 , Note that it is

unnecessary to compute or determine the stress distribution in the volume.

i Also, observe that when m goes to infinity we get the classical result

PZ/P = (V 2 1VI) 2 / 3 = A 2 /A1  (31)I
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I III-A-3-c-ii. Pure Bending-Rectangular Section

The stress in a rectangular beam subjected to terminal couples

j can be written as

' - b  h (32)I
where orb is the maximum fiber stress and h is half of the beam depth.

We may then compute the risk of rupture as follows:

dV fo b " bLdy

m

Z)Vb 0b 0u o~ -~~ (33)- = 21m+ I) o-'b  0 1,1033

where L is the span length, b is the beam width, hu = h 0 and Vb is

the beam volume. We note that the argument of % is zero for compressive

stresses and for tensile stresses which are less than u"

Now, for a tensile specimen of strength ot, the risk of rupture

I becomes

Bt =Vt (t - -um (34)

where Vt is the volume of the specimen. Hence, when the risks of rupture

and, therefore, the probabilities of rupture of the bending and tensile speci-

mens are equal, the relationship between 06 and o't becomes
l 1 11

t.I Vb I * + --u (35)

(1' [2(m+1) VJ 3 5ob

where both stresses are taken at the same probability level, e. g., they may

be taken as the mean fracture stresses.

For o'u = 0, Eq. 35 reduces to 1/iI 1= .V
0-tVb I(36)
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It is worth noting that one could have compared the mean fracture

stresses in bending and tension by substituting the respective risks of rup-

ture into the general expression lor the mean, Eq. 24. However, the re-

sulting expressions for the two Os Is are awkward to compare, since the

O'm for the case of pure bending is not a closed furin expression. It is

interesting that for the case of a classical material (m = co), Eq. 35 yields

o0t = 0-b"

III-A-3-c-iii, Other Specific Results, xu = 0.

By assuming that the probability of fracture in a direction normal to

a plane passing through a point depends only on the tensile stresses acting

thereon, the total probability of fracture at the point may be found by con-

sidering every plane passing through the point ". Using this idea, Sal-

massy (17) developed the following relationships.

Rectangular Bending Member - Circular Torsion Member:

1 /rm
Oebending (2m+ 1) (2m + 2) P Vtorsion

torsion L Z(m + Vbending (37)

where

-3 m -- 1m .. gamma function (38)
F(m +-z )" + 1

Prismatic Tension Member - Circular Torsion Member:

1/mn

crtension (2m + 1),6 Vtorsion (39)

o'torsion 2 (m +2) Vtension (

All of the above stresses are the extreme fiber stresses associated with

the mean fracture strength of the members.

The usual assumption in the Weibull theory is that every volume of

the body contributes to the "risk of rupture"; however, he points out the
following: "In fact, it is not unusual that the ripture of a brittle body

starts on the surface whose properties may differ from those of the ma-

terial in the interior of the body, for instance owing to the method of
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manufacture. In the extreme case, where all fractures start from the sur-
face and none from the interior of the body, it may be assumed that

g (x) = 0 for each volume element in the interior, so that the usual volume

integral for B needs only to be extended over a surface layer of the small

thickness h. " Using this assumption, Salmassy works out several im-

j portant relationships in pages 150 to 155 of Reference 17.

III-A-3-c-iv. Safety Factors for Uniform Tension

The probability of fracture for uniform tension is found from

Eqs. 22 and 23 to be

F(x)= 1 -e xo (40)

For this distribution function the mean stress is found from Eq. 24:

-V ____

xm = Xu + f 0 (41)x Xu

Introducing the change in variable

EL=V j;dx = xo V
-l m 1 __ dt (42)mm

I Eq. 41 becomes

I Xm = Xu + x V -
1/m I_ e. z 1 d

S xu+xO V-1/m (1 +-) (43)

I where r

]f(y) J e t ty-'dt; y '(y) = O( + y) (44)

Now, if xF is the stress associated with a specified probability of fracture

F, we may find xF from Eq. 40, thus

F F= X u+ x0 [_ log (I -F)]I1/m V_ 1/m (45)
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5 Consequently, the safety factor xm / xF becomes

F XF xu + x o V' [-log (1 - F) I/

This safety factor is plotted in Figure 9 for various values of m and

xu = 0. We note that the value of the safety factor is very sensitive to
I. changes in the constant m and that this sensitivity increases when greater

survival probability is demanded. Furthermore, this effect is most pro-

nounced for small values of m.

III-A-3-d. Estimation of the Weibull Parameters (x11 , xo, m)

We have indicated in previous discussions that the zero probability
strength xu will probably become the design stress in large structures.

For this reason it is important to obtain a good estimate of this parameter.
The role of m in extrapolating the strength of a small specimen to a proto-

type structure is clearly brought out in the discussion attendant to Eq. 30.
However, to appreciate the accuracy which is called for in the determination

of m, it is convenient to refer to Figure 9. Here, it is apparent that a

small error in the determination of m gives rise to a very large error in

the safety factor. This is especially true for highly variable materials
where m is low. Materials with large dispersions in their fracture strength

require great accuracy in the determination of m; but, these are precisely
the cases where the estimation of parameters is the most difficult.

When Weibull first proposed his theory of failure, he used a graphical
method to determine the parameters of his distribution. This method, which
was briefly touched on in Se~ction II-B-2, will be described more fully in the

following subsection.

III-A-3-d-i. Graphical Method for Determining Xu, Xo, m

The following method is applicable when data is available from

specimens of only one size. It was mentioned previously that the important

constant m could be determined from Eq. 29 when data was available from
two size specimens.
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Figure 9

VARIATION OF SAFETY FACTOR WITH THE WEIBULL
FLAW DENSITY CONSTANT, m WITH xu = 0

(AFTER ANTHONY AND MISTRETTA, REF. 61)
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Weibull's method, when applied to the case of uniformly stressed

material, begins by writing Eq. 40 in the form

log log 1 F = m log (x- xu) - m log x o +log V (47)

It can be seen that a plot of this distribution function will be linear in a sys-

tem of rectangular coordinates in which log log 1 1 F is the ordinate and

log (x - xu) the abscissa. In addition, m will be the slope of the Jistribu-

tion function in these coordinates. Also, from Eq. 47, a change in the

volume of the specimen merely shifts the distribution curve vertically.

The general principle of this method consists in plotting the frac-

ture data in this system of coordinates, drawing the best straight line

through the data, and determining the constants m and xo from the slope
and intercepts of the line. As for the determination of the zero probability

I strength, xu, Weibull states:

I"The application of this method presupposes the knowledge of the

constant Xu, which as a rule is not known. In this case, it is advisable to

plot the test figures at first in the system of coordinates log log I

aand log x. If the figure happens to follow a straight line, this implies obvi-
ously that xu = 0 . If, on the other hand, the test figures are located on a

I curved line (concave downwards), it follows that xu -A 0, and a tentative

value is taken for xu. If this value is too high, the curve will be bent in the

opposite direction (concave upwards), and further tentative values must be

taken, until the curve approximates a straight line as closely as possible.

It will be found that after some experience a few attempts according to this

method suffice to bring forth results and that the curvature of the curve is

very sensitive to variations of xu, provided that the test series is passably[large, so that the value of xu may be determined with a degree of accuracy

corresponding to the scope of the test series," 1

I A problem arises when plotting the fracture data in the selection of

the value of the probability, F, corresponding to a given test value of x.

The manner of this selection would seem critical, since it is the variation

of probability of fracture, F, with stress, x, that is the object of this

I analysis. This question is usually discussed under the name Plotting
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Positions. An enormous literature is devoted to this question; however, a

concise treatment is contained in Reference 24 on extreme values. Weibull
determines the probability, F, corresponding to a fracture stress, x, by

I the formula

Fn n (48)

Here, N represents the total number of tests in the series, where the N

observed fracture stresses are arranged in increasing order from I to N.

Then, Fn corresponds to the nth observed fracture stress, xn. If Eq. 48
is substituted into the left-hand side of Eq. 47,

log log I- = log log N + I (49)

The distribution curve corresponding to Eq. 47 is then determined from a

plot of

log log N + I versus log (on - Ocu).

The above method would also apply to the case of pure bending. Using

the risk of rupture expression given in Eq. 33, the probability of rupture be-

comes

loglog N + 1 = (m + l) log (o"rb - Cu) - m log 00
N+ I - n

V b  ,-log e%+log Vb(m + 1) + log log (50)

where we have used the Brigg's logarithms.

It is suggested here for the case where ou J o to plot

log log N + 1 + log O'b] versus log (c'b - eu )

The value of aVu is found by trial and error until a straight line plot is ob-

tained. Then, (m + 1) is determined asthe slopeofthis line and o is

found as in the case of the tensile specimen above.

The above graphical method corresponds precisely to an earlier dis-

cussion of a method referred to as "probability paper. " The graphs shown

in Figures 5b and 8 b were constructed using the methods outlined in this
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section. It should be emphasized that when it is not possible to get a

straight line in the Weibull coordinates, the distribution is not of the Wei-

bull type. Furthermore, if two or more straight lines are obtained, this

means our population is composed of a mixture of Weibull distributions. A

distribution function does not exist in this case in the sense that a multi-

[valued function is not a function. We can use the composite distribution

curve only in the case where the proportions of each population are known -

jand here the difficulties will ae very great.

III-A-3-d-ii. Comments on the Graphical Method and Other Methods

We shall begin by quoting Weibull( 2 5 ):

"Up to the past year (1951) the author's usual method (of estimating

the parameters) has been to plot the data as shown in the paper (graphical

method) and to choose xu to give the best straight line. In this way it is

easy to decide if the distribution is simple or complex, but the procedure is

not entirely free of subjectiveness. " Indeed, Weibull's comment agrees with

many of the experiences of other investigators in the field of statistical

fracture strength.

In the discussion of Weibull's paper referred to above, several

methods were advanced as alternative methods for estimating the parameters.

These methods and several others have been discussed in a very complete
manner by Salmassy (17) on pages 126 to 149. (Several typographical errors

appear in the formulas.) In particular, six so-called mathematical methods

are discussed in addition to a least-squares method and Weibull's standard-

ized-variable method. The methods have all been applied to a series of

tests on Hydro-Stone Plaster tension, bending, and torsion specimens of

various sizes. The table summarizing their results is reproduced in

Table 2.

The results shown in this table are very disconcerting. First, many

Lof the predictions for the zero strength xu are greater than the observed

lowest value. Also, contrary to Weibull's hypothesis, the values of both m

jand xu do not appear to be independent of size and stress state. Finally,

it appears that the constants also depend on the method of calculation. For!
ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

37



I I DISTRIBUTION CONSTANTS FOR HYD:

For the Distribution

I

Ix.

(a) Material Constant, m X1
Test(a) Lowest

Series Mathematical Methods Graphical Standard Fracture

Method Variable Stress. psi

I ii 1i IV V(b) VI Method I

Small bend 3.0 1.1 3.0 2. 3 2.8 3.1 4.2 3 1195 1210
(68)

Large bend 7.0 --- 4.5 21.0 5.9 6.3 7.7 8 840 170 -

(99)

Small tensiun 4.7 3.1 3.6 4.3 4.0 4.4 3.2 3 705 465
(82)

Large tension 5.7 --- 3.6 8.1 4.9 5.4 6.5 5 600 165 -
(36)

Small torsion 2.3 1.0 3.7 4.9 2.8 2.2 7.0 5 985 925
(39)

Large torsion 3.0 1.4 3.7 4.6 3.1 2.9 5.0 5 680 595 -
(81)

(a) The figures in parentheses indicate the number of specimens in the series.

(b) These values of m were those assumed for the calculation of the constants xu and x0 by Method'

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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Table 2
S FOR HYDRO- STONE PLASTER (AFTER SALMASSY REF. 17)

I X-X mn

istribution Function F = I -e-V x 0

Xul Zero Strength, psi Xop psi

Mathematical Methods Graphical Least Mathematical Methods Graphcal

Method Squares Method
I II III IV V VI Avg. Method I II III IV V VI

1210 1485 1225 1295 980 995 1140 1100 980 325 5 180 105 235 725 315

170 ---- 650 0 270 235 330 0 235 1505 ---- 1015 ---- 1425 1245 1680

465 720 635 525 380 485 500 700 395 485 250 325 430 490 855 270

165 ---- 445 0 190 180 245 0 230 1120 ---- 870 ---- 1140 850 1300

925 1260 615 315 745 950 710 0 610 205 20 480 760 330 670 1100

595 ---- 480 345 511 595 505 300 485 1155 1310 1225 1317 1305 600 1340

x 0 by Method V; They are the average of the values obtained from the other methods.

IGY
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example, the calculated m is found to range from 1 to 21; the zero strength

varies from zero to 1485 psi.

In most of the mathematical methods referred to above, one equates

the various moments of the Weibull distribution to the corresponding mo-

ments of the data. Because the higher moments require much more data

for their estimation than the lower ones, it is extremely likely that much of

the differences between the various mathematical methods can be attributed

to the fact that the small sample sizes used provide widely varying preci-

sion in the moment estimates.

The development of any design procedure based on statistical meth-

ods depends upon the availability of methods for estimating the various

statistical constants. The present state of the art does not appear to pro-

vide these methods. Recognizing the shortcomings of the presently avail-

able methods, ARF attempted to program the graphical procedure for the

digital computer; however, the resulting system of three nonlinear algebraic

equations has apparently proved too unwieldy even for the machine (2 6 . Cur-

rently, other systems of equations are being studied at ARF with the objec-

tive of resolving this most important problem. It should be mentioned that

Weibull has introduced another new method for estimating the parameters

of complete or truncated distributions which Las not really been studied

sufficiently by other peoF in the field(2 T)

III-A-3-d-iii. Effective Number of Specimens

The determination of the parameters of a population distribution

function requires an infinite amount of data when the statistical variate is

continuous. One of the central problems in statistics is the estimation of

these parameters from a finite sample size; especially, a small sample

size. We are, of course, led naturally to inquire into the smallest sample

size possible which is consistent with the functional requirements of our

problem. Although there appears to be no easy answer to the question of

minimum sample size, a considerable literature has been devoted to its

study, particularly, when the population can be treated as normal. The im-

portance of sample size in relation to the "statistical strength problem" is

brought out quite dramatically in Figure 10, where the results of fracture

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY
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tests on samples of five specimens are presented. Certainly, the results

shown here cannot be explained by the Weibull theory; but more significant.

ly, the results cannot be explained by any weakest link theory for homo-

geneous solids since they would all predict decreasing strength with increas-

ing size. The random positions assumed by the six points in this figure

would hardly surprise any investigator who deals with the measurement of

physical quantities. It is obvious, here, that five samples are not enough to

reliably determine the mean fracture stress.

In our study of safety factors in Section III-A-3-c-iv, we indicated

J that the design stress depends very sensitively on the flaw density exponent

m. We will now attempt to show how m is related to the actual data of the

j problem through both the mean and the standard deviation of a sample. For

the case of uniform tension, the variance can be found from Eq. 25 when

F (x) is given by Eq. 40 and xm is given by Eq. 43; hence,

az ux _dF dx 1 V ) V "  i I

dx x -0 V 1/m r"1

(xxt -1 V( X -x V - (51)

( dx

Introducing the change of variable

Z = v x - ,(52)

the variance 
becomes

a2 = x2 V ' 2/mf[ 2 / me - ZF(I +-L) 1l/me-e

i+]-T (11 + -jj1 e d Z

or finally,

a= x2 V / m T_ (I + T) - F 21 (53)

Note that we have established the fact that the standard deviation decreases

with increasing volume as V " l/m
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When xu = 0, we can eliminate xo from Eq. 53 by forming theI 2
square of the coefficient of variation, i.e., (a/xm)

( = ml (54)

-d b Rudic 28),
This formula, originally presented by Rudnick has appeared incorrect-

ly in three publications known to the author, This equation concis Ay de-

scribes the relationship between the sample parameters and the extremely

important constant m. We have plotted Eq. 54 in Figure 11. Using this

graph, the reader can readily verify that the function is closely approximated

by:

(a/xm) im2 (55)

In a paper by Wallhaus (2 g , the statement is made that Irwin* used Eq. 53
to show that the variance varies inversely with m. During the preparation

of this report a better reference has come to the author's attention, in
which Irwin ( 3 0 ) shows that

It turns out, that this expression does not approximate the value of m given

by the exact formula of Eq. 54 as well as the simple relationship in Eq. 55.

It is a well-established statistical fact that the higher the moment of
the probability density function, the more data are required for its accurate

determination. This fact is clearly demonstrated in Table 3, where a tabu-

lation of results of fracture tests on Wesgo Al-995 and Beryllium Oxide is

presented (31) Apparently, for sample sizes of 40 to 60 it is possible to

consistently reproduce the mean fracture stress within a small variation.
We notice, however, that the variation in the standard deviation, or what

* Irwin, G. R., notes from a series of lectures presented in the Depart-
ment of Theoretical and Applied Mechanics, University of Illinois, Novem-
ber, 1961; also private communications with Wallhaus.

1.
ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE Of TECHNOLOGY

- 42 -



[
N z

I -

+
..

1. II ---

Nz

0-

1 cd
-4

j I- - G)H-0

1 _

-__ 0'I

I>
Pl4

IN

- ~--4 - - - -'Z

Cz

1-

0 c' W I,- Ino Ln --

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

- 43 -



o

'20

~ - r- ' 0

NN

000

WO 10 0 4'

4)l N! N E- - : c rd to

'0 '.0 -

L) NEl-

0 ~ en~ L 0 .n

01 N1' t 00

0 0 V. 00 0'0
x )f0 LI)No0' - -~

U) 0
0 0-

t ~ I-.co o 0

N- N

rz~ wz

0 0 +.
o U ~ C

AROU REEAC FONAINO LIOSINTTT FTCN LG

0 N 44



jamounts to the same thing, the variation in the coefficient of variation, can

be quite high even for this size sample. In view of Eq. 50, the same error

or fluctuation which occurs in the standard deviation also occurs in the

constant m. Referring to Fig. 9 we see that this error is magnified when

we select the safety factor. We should note that the data reported in Table

3 was obtained by subjecting the specimens to different stress gradients and

although this did not effect the mean fracture stress it is possible that it had

an effect on the standard deviation.

To clearly point out how devastating the small sample can be, we

have included in Table 4 the results of fracture tests on Wesgo AL-995 at

10000C where only five specimens have been used. Fluctuations of 300%

fand more are shown in the coefficient of variation.

Up to this point we have considered only the relationship between m

and the sample parameters for the case whenxu = 0. Following Reference

32 we will now indicate that no essential difference occurs when x i 0. In

fthis latter case it is convenient to introduce the mode of the frequency
distribution. Since the mode is the stress associated with the highest point

on the frequency curve, it is easily computed by taking the derivative of

f(x) and setting it equal to zero:

I. df(x) dZ~) d2  [1 (x ) =ox0 (6
dx dx - 1 2 ex (56)

This leads to

Xd =x V + x (57)

Now, using Eqs. 43 and 53 we obtain,

2 1- ( ' 1 m

a 2 + 2 - I + m
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I
The sensitivity of the dependence of m on the data may be inferred from

the fact that m varies from I to o,; when (xm - X mode) 2/a2 varies from I to
zrero. The quantity (xm - x mode)/a is sometimes used as a measure of

skewness. Since skewness is also defined as the third moment of the

frequency distribution about the mean, we can expect that an enormous amount

of data will be required to reliably determine m from Eq. 58.

The principal accomplishment of this subsection has been the

j. demonstration that m is inversely proportional to the standard deviation.

With this information the question of sample size for a reliable m becomes

I equivalent to the question of sample size for a reliable determination of the

standard deviation. This is a happy situation since a great deal of work has

jbeen conducted for this latter problem. Although we will not consiler the

details of this statistical problem in this report, we shall quote the following

-theorem which is the heart of the solution for normal distributions:

Theorem: If x is normally distributed with variance o" and s is the sample

variance based on a random sample of size n, then ns /o 2 has aXZIdistribution with n - 1 degrees of freedom. (see any statistics book)

The literature on statistical strength theory does not concern itself

to any great extent with the question of sample size; however, there are a

few comments that seem pertinent.

1) In his investigation of glass fiber strength, Wallhaus 2 9 came to the

following conclusion: "The use of a large sample size was demonstrated to

be essential to avoid distorting the information obtained in an experimental

investigation. Significant deviations occured in the Weibull distribution

diagrams for sample sizes of from 30 to 50 specimens." '

2) As can be judged from Table 2, sample sizes of close to 100 did not

lead to consistant results for the determination of the Weibull parameters

for Hydro-Stone plaster.

3) In the 1930 paper by Koshal and Turner(3 3) on the determination of

mechanical properties of cotton fibers, a considerable concern was shown

Ifor appropriate sample size. We shall quote some of their comments.

"It is seldom indeed that textile tests are made in sufficient numbers

to make it possible to ascertain the form of the frequency-distribution of the
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results with any degree of accuracy. The curves published for cotton yarns

by Andrews and Oxley appear to be the only curves so far published relating

to numbers of tests extending to some thousands. Yet if it is desirable to

I make tests on cotton yarn by the thousand in order to obtain an accurate fre-

quency curve, it is even more necessary for single cotton fibres, as their

I variability is far greater than that of cotton yarns. Frequency curves for

fibre properties have been obtained by various workers; thus, Barratt has

given the frequency distributions of the following properties of cottlon fibres -

length, diameter, breaking load, and extention at break - and has fitted to

them curves derived from a formula due to Bateman. But in most cases it

is only by courtesy that Barratt's theoretical curves can be said 'to fit' his

experimental curves, no doubt because the number of tests employed in the

determination of each fibre property was only 100 - a number much too small

for the accurate determination of the frequency distribution; moreover,

I there is no justification for his use of the Poisson formula rather than the

normal or other possible type of curve.

I *.... In a paper dealing with 'Variability as a Problem of Textile

Testing, ' Pierce gives a table in which he includes two sets of results for

the breaking load of cotton hairs. But here again, only 200 tests were made

in each case, so that the determination of the type of frequency curve cannot

be regarded as at all trustworthy."

I In this paper by Koshal and Turner, they consider, among other

things, a series of 3000 tests on the breaking strength of yarn. The

results of this important work are summarized in Table 5 where we have

included the author's comments at the bottom of the table. Note that each

of the entries for the population parameters are stated with their attendent

probable errors. The probable error is defined as 0. 6745 x standard

I deviation, so that in a repetitive experiment, half the values will lie in the

range of the values indicated, e.g., half the mean stresses xm would lie

between (xm - prob. error) and (xm + prob. error). The authors conclude

for this highly variable material that 1000 tests are almost as significant as

the 3000 tests. We will return to this test series in future discussions.

4) As a final comment, the people working at Armour Research

Foundation in the area of statistical strength are currently of the opinion
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Table 5
FREQUENCY-DISTRIBUTION OF STRENGTH-VALUES OF 3000 FIBRES

OF SURAT 1027, A. L. F. (1925-1926)

Observed' Theoretical Sets of 1, 000 TestsStrength- Frequency Frequencyclass

grams 3, 000 3,000 1, 000 First Second Third
Tests Tests Tests 1,000 1,000 1,000

0.0 - 0.9 117 17. 3 41 38 41 38
1.0 - 1.9 550 531.5 177 182 Z03 165
2.0 - 2.9 552 596.5 199 184 180 1881 3.0 - 3.9 510 522.1 174 172 179 159
4.0 - 4.9 424 407.2 136 156 131 137
5.0 - 5.9 312 295.6 99 105 93 114
6.0 - 6.9 199 202.8 68 65 53 81
7.0 - 7.9 -149 132.9 44 46 55 48
8.0 - 8.9 74 82.9 28 20 2-5 Z9
9.0 - 9.9 46 50.5 17 14 13 19

10.0 - 10.9 29 Z9.4 10 7 7 1511.0 - 11.9 23 16.4 5 7 10 6
12.0 - 12.9 6 8.8 3 2 4 0
13.0 - 13.9 4 4.5 1 1 2 1
14.0 - 14.9 4 2.2 1 1 3 0
15.0 - 15.9 1 1.0 0 0 1 0

Mean 3.91 3.86 3.88 4.04
40.029 +0.048 +0.052 +0.050

Distance bztween I. 655 1.699 1.823 1.6375
mean and mode +0.104 +0. 172 +0. 2176 +0.1680

Standard 2. 357 2. 272 2. 482 2. 358
deviation +0. 0205 +0.0343 40. 0374 +0.0355

Skewness 0. 701 0. 748 0. 734 0. 695
+0.040 +0. 070 +0.085 +0. 069

"It is; interestinqz to notc what the results would have been if we had

tested only 1, 000 fibrc. For thi ,. purpo, , the 3, 000 results have been divided

into thre ,ucc ssivt!:ipH of 1, 000 c1 i; column 4 in Table 5 shows the

theoretical f-eqency-distrjbution of 1,000 result,;, ba ;eid on that of the

3, 000 riu iit,,;; coul ,i 5, 6 ; ncl 7 show., the ob,,erved frequencies of the three

sets of 1, 000 r, 'ults. At [C:w botl oifi of Tal.. 5 ak: it;V--v 1 'I , sevcrar values

of the , , Uc dist ( c 1 tWvien I mo;tn ,,1 tC s:ot , t i n dard

deviation, ;a; e the v. .i; li'o n ma;tr ,xt, olio of thos "a1.uc a and their

assoclhit.Ud i I, tI'Mrors, w( -; uclud . thia the co , , t. -. . nomt :-',Lnifi-

calitly ll r,.nl for :4,'mm of 1, 000 t,,;t,; ,:nd 1, 000 i'; Koshal ;;rel Turner
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that 60 to 70 specimens are sufficient for the estimation of the Weibull

parameters for ceramic materials.

It is the author's'view that the d~velopment of a sound structural

design theory for brittle materials depends on the availability of reliable

estimates of distribution parameters which demands that a rational procedure

be put forward for the determination of sample size.

III-A .3-e. Verification of Weibull's Statistical Theory

The verification of Weibull's statistical fracture theory for a given

material requires the satisfaction of three seperate questions:

1. Does a distribution function exist for a generalized stress x?

2. Is this distribution function of the Weibull type, i.e., of the form of

Eq. 22?

3. Are the distribution constants xu, xo, m constants of the material, i. e. ,

are they independent of size and stress state.?

Notice, that a material may affirm question (1) and still negate questions

(2) and (3). Furthermore, a material may affirm questions (1) and (2), and

still negate question (3). Recalling our .earlier comments in Chapter II, the

non-existence of a distribution function Precludes the development of a

statistical fracture theory. The Weibull distribution function is simply one

of a large number of analytical distribution functions. which have been found

useful for the description of continuous random variables. In addition to

its usefulness in the study of breaking strength, Weibull' t ) has shown that

it has considerable utility in the study of more diverse phenomena such as

(i) the size distribution of fly ash, (ii) the length of Cyrtoideae, (iii) the

statures of adult males, born in the British Isles, and (iv) the breadth of

beans of Phaseolus Vulgaris. Consequently, the fact that the distribution

of strength of a particular size specimen happens to have the form of the

Weibull distribution, in no way implies that the distribution of a larger

specimen is in any way related to the first distribution. Thus, in addition

to having the form of the Weibull distribution, a material must satisfy the

hypothesis of the weakest link formulation before the parameters xu, x0 , m

are constants of the material.I
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It is extremely important to note that the three questions in the

preceeding paragraph all relate to some choice of a generalized stress x.

Failure to affirm any of these questions may conceivably be traced to the

wrong choice of x. It is not uncommon to find generalized stresses, for

example, which are quite acceptable for uniaxial and biaxial stress states,

but which are not at all suitable for triaxial stresses. For these situations,

the Weibull theory is correspondingly limited.

For a homogeneous isotropic material, the generalized stress x will

be a function of the principal stresses and perhaps some of their derivatives.

As a first order approximation it would seem reasonable to choose x so that

it did not depend explicitly on the stress gradient or any higher derivatives

of the stress. This corresponds to the assumption that the behavior of an

element is independent of the conditions which exist at other elements.

There are situations, however, where gradient effects and even shape

effects have been observed. Some of these cases are referenced in a

survey article by Weibull ( 3 4 ).

1 When the generalized stress depends explicitly on the principal

stresses only, the case of uniaxial stresses allows only one possible

choice of generalized stress; however, for polyaxial stresses the possible

choices are unlimited. In the little work that has been done in the area of
!
j. polyaxial stresses, investigators have followed Weibull's procedure of using

the normal stress on a plane as the generalized stress. This stress is

clearly a function of the three principal stresses and furthermore its use is

a simple generalization of the uniaxial case, i. e., when this normal stress

is greater than xu it produces a finite contribution to the probability of

fracture, and when it is less than x the failure probability is zero.

The use of the Weibull failure theory requires in most cases that

the generalized stress x be specified; however, one notable exception exists.

For the case of specimens of similar geometry and proportional tractions,

and hence stresses, Eq. 24 can be used to predict the size effects for those

materials which have zero "zero probability strengths". We note in Eq. 24

. that the x's may be taken as any statistical variate such as the external

failure load, or one of the stress invariants,
I
L
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We shall attempt to answer the previous three questions in the light

of specific results reported in the literature for various materials.

III-A-3-e-i. Existence of a Distribution Function

In this subsection we shall confine our attention to a few examples in

the literature where the distribution function can be shown to be non-existent.

It is certainly easier to show this than it is to prove existence.

1. In the report by Salmassy ( 3 5 ) we find a typical description of a

situation in which no distribution function can exist.

"Research for the first year of direct Air Force sponsorship ... is

covered by AF Technical Report No. 6512, April 1951. This work was

limited to Kl 51A, a nickel-bonded titanium carbide product of Kennametal,

Incorporated. Although this material exhibited slight plastic flow in com-

pression, bending, and torsion at room temperature, the mode of fracture

was that nor*r-ally found in brittle ceramics. However, research revealed
the reproducibility and the homogeneity of K151A to be so poor that any[ attempt at quantitative correlation of fracture data was futile. Nevertheless,

the data of this period, indicated that a flaw-type mechanism offered the

most likely basis for developing correlations. "

2. The existence of a distribution function is very much in doubt when

Sone obtains the so called "complex" distribution shown in Fig. 8. Weibull

has the following remarks concerning such distributions:

"The fundamental question now a'rises, whether this splitting up is

a purely formal operation, or whether it might unveil some hidden real

causes. It may be said that any distribution may be represented by a sum

of a sufficiently great number of simple distributions, just as any periodical

function may be developed in a Fourier series. However, if the number of

the components be small and the number of observations sufficiently large,

the likelihood of re'al causes seems to increase. In any case, it is very

easy to produce real complex distributions by synthesis."

If the bilinear distribution curve shown in Fig. 8 actually represents

a mixture of two distinct components and if these components will not

necessarily always be found in the same proportion, a distribution function

does not exist.
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[
3. Bending tests were performed on a large number of specimens

of commercial refractory porcelain by Salmassy 1 7) . The data from this

test series, for both large and small sppcimens, are shown in Figs. 12 and

j13. Salmassy has a number of important remarks concerning these Weibull

plots which we shall quote.

i. "...Figs. 12 and 13 show the distribution curves for the specimens

plotted logarithmically. As can be seen, both distribution curves are made

[° up of two straight-line portions. If these distribution curves followed

Weibull's distribution function all the data should fall on only one line

I instead of two. Weibull has pointed out that the behavior ..... indicates
that the fracture of such a material is complex. This means one of the

following:

(1) The material or fabrication of some of the specimens was

jdifferent from the rest.

(2) All the specimens were not tested in identically the same way.

(3) At a certain stress, some fundamental change takes place in

the nature of the fracture of the material.

These results are of special significance, for they point up the

possibility of obtaining complex behavior in the practical applications of
these statistical principles (Weibull's). If a set of data yields the type of

distribution curve shown in Fig. 12, then the designer will know that he may
not be obtaining uniform material from his supplier or that his test data

jhave not been obtained in a uniform way.. If neither of these are found to be

at fault, and the distribution curve is found to be fundamentally complex,

then the analysis of the data may be difficult (or perhaps impossible)."

III-A-3-e-ii. Is the Distribution Function of the Weibull Type

I It seems appropriate to open this subsection with a quote from

Weibull(19) concerning the validity of his distribution function (Eqs. 17 and

18):

"The author has never been of the opinion that this function is always

valid. On the contrary, he very much doubts the sense of speaking of the

"correct" distribution function, just as there is no meaning in asking for theI
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correct strength values of an SAE steel, depending as it does, not only on
the material itself, but also upon the manufacturer and many other factors.

In most cases, it is hoped that these factors will influence only the parameters.

However, accidentally they may even affect the function itself. "

The problem of testing the compatibility of a set of observed and

theoretical frequencies, is treated extensively in statistics under the subject

of "Goodness of Fit.( 3 6 ) Generally the X 2 test is used; however, here we[will appeal to the simple procedure of plotting the data in Weibull coordinates

and determining whether we obtain a straight line.

.1. As our first example, we refer to the set of data on the bending

strength of Wesgo AL995 which is presented in Fig. 5b. This data was

obtained by Bortz( 1 5 ) at room temperature using a dog bone shaped specimen
which will be discussed inChapter V. Certainly for the specimen used the

Weibull distribution appears to represent the data; but, whether the distri-

bution constants associated with this diagram will be useful for other size

specimens remains an open question.

2. Let us now return to the series of 3000 tests of Indian Cotton

which were studied by Koshal and Turner. (33) These authors fit the data

shown in Table 6 with the theoretical frequency curve of Pearson's Type 1,
i hence,

/ece 0.876716 3. 631284
y = 599.3 1 + 18 7 9.1947 (59)

where y represents the frequency of any strength x, expressed ip grams.

The Weibull plot of this data is shown in Fig. 14 from which the Weibull

parameters were determined; xu = 0. 59 grams, x0 = 3.73 grams, and

m = 1. 456. Not only does the Weibull distribution appear to fit the data; but,
the following table shows that the fit is even better than that of the Pearson

Type I. .

3. In Table 3 of this report, the results of various bending tests are

reported for specimens of equal volume but different shapes. Referring'

specifically to Wesgo AL995 at 10006C and Beryllium Oxide at room

temperature, Weil and Daniel 13 1 ) decided to combine the data for the various
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Table 6

FIBER STRENGTH OF INDIAN COTTON (AFTER WEIBULL, REF. 19)

Class Tensile Strength. Grams
Identifi- Weibull Observed Pearson
cation Values, n Values, 1 Type 1, n

1 118 117 127
2 646 667 659
3 1232 1219 1255
4 1751 1729 1777
5 2161 2153 2184

. 6 2461 2465 2480
7 2667 2664 2683
8 2802 2813 2816
9 2886 2887 2899
10 2937 2933 2949
11 2966 2962 2978
12 2982 2985 2994
13 2991 2991 300314 2996 2995 3007
15 2999 2999 3009

16 3000 3000 3010

I11 14 16
0.4 - - - - - - - -

i 0.0 
910

56

-0.4 -Z4-

as 3
ba-0.8 -- - N 3000

0X u = 0.59 gr.
0 3.73 gr.

-1.2 m 1.4561

-1. 6---

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9 1.1

log (x - x1)

i Figure 14

FIBER STRENGTH OF INDIAN COTTON (AFTER WEIBULL, REF. 19)
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shapes in view of the fact that their means and standard deviations were so

similar. The combined cumulative distribution curves are shown in Figs.

15 and 16 where we observe their excellent linear correlation.

4. As a final example of the applicability of the Weibull distribution

we shall consider data obtained from a biaxial stress field. Salmassy ( 1 7 )

developed the distribution curve shown in Fig. 17, using torsion specimens

made of Hydro-Stone plaster. Once again, we find a reasonably good linear

I. correlation.

III-A-3-c-iii. Are the Weibull Parameters xu , xo, m Constants of the

Material

One of the requirements for the successful application of the Weibull

theory is that the material to which its applied be of the series or weakest

link type. When this assumption holds, it is sometimes possible to

characterize a unit volume of material with the Weibull distribution function

and then treat the entire structure as if it were a chain with each unit volume

Sas a link. Under these conditions it is possible to determine the statistical

parameters of a link, from the known behavior of the entire structure or

chain. If we were to apply the Weibull theory to a material which did not

behave as a series or weakest link model, every size and stress state would

provide a different set of Weibull parameters since the Weibull theory would

not properly account for these effects. After presenting his basic theory in

Reference 11, Weibull presented another paper, Reference 37, in which he

makes the following statement, "At the time when the new theory was set,

the experimental data available for its verification were rather scarce, so

that the first step required was to provide more complete experimental

evidence. From the researches undertaken for this purpos ., some unexpected

results were obtained, which necessitated an extension and supplementation

of the theory. " Weibull then proceeded to introduce the concept which he
I called irregular materials and which we refer to as parallel material. The

I theory which we refer to as Weibull's theory will not work for materials

which do not satisfy the series model.

Perhaps one of the greatest demands placed on any strength theory

Lis to predict the effect of size. If a theory would do nothing else, it would
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still allow the designer to predict the behavior of a prototype from that of

a model. If m is a constant of a "series material", Eq. 29 enables us to

make such a prediction even when we don't know the form of the generalized

stress x. We will now consider several investigations which deal with size

effect. 1. One of the most widely quoted verifications of Weibull's theory

is the work of Davidenkov, Shevandin, and Wittmann( 14 ) on the influence of

1. size on the brittle strength of steel. Using cylindrical bending and tension
specimens of brittle phosphorous steel in liquid air, they determined almost

j identical values of the constant m; namely 23. 5 and 25.4. These values of

m, calculated from Eq. 29 for the two larger specimens of the three used,

twere then employed to predict the fracture stress of the smallest specimen.
The predictions are found to be off by only 3%. Furthermore, the prediction

of the ratio of the strengths in bending and tension as determined by Eq. 36
(which assumes o = 0) is 1. 39 and according to the experiment, 1.40. Theu

average fracture stress is plotted against the volume in Fig. 18 for the

bending and tension tests. The standard deviation of the test results is also

shown, and as predicted by theory, it is found to decrease with increasing

specimen volume. We quote Davidenkov's conclusions:

"The experimental data thus lead to the conclusion that the statistical

theory of strength explains satisfactorily and without inner contradictions

the influence of size on the brittle strength of steel. From this fact a few

j important practical conclusions can be drawn.

The shape of the curves in Fig. 18 shows that the brittle strength

j varies with increase of size more and more slowly, so that it can be assumed

that this tends to some definite limit. (The zero strength is not zero as

j assumed in their calculation of m.) The theoretical meaning of this limit

consists in the fact that starting with a sufficiently large specimen, a complete

set of all possible non-homogeneities will be present.

The larger the specimen the closer this limit will be approached.

It would therefore be advantageous to make tests as far as possible with

large specimens under uniform axial stresses. "

2. The size of a mild steel specimen has been reported to effect its

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

- 62 -



1 20

100 -...

90

4) 80

60

5 0

40 4 8 *12 16 20 24 28

1/3Relative Volume, V ,mm

Figure 18

THE EFFECT OF SIZE ON THE MEAN FRACTURE STRESS
AND STANDARD DEVIATION IN BENDING AND TEI SION OF
STEEL TESTED AT THE TEMPERATURE OF LIQUID AIR

(AFTER DAVIDENKOV, REF. 14)
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i

room temperature rpper yield point strength. (38) The data for these specimens

I yielded to treatment by Weibull's theory for homogeneous tension members.

The data, plotted in Fig. 19, gave a flaw density exponent of m a 58 which

I indicates a relatively narrow distribution curve. The volume effect is

reasonably well predicted over the three decade range considered.

3. Bortz and Weil 3 9 )have recently completed an investigation of the

statistical strength properties of Wesgo Al 2 03, Lucalox Al 2 0 and

I ARF MgO. The results of this study are summarized in Table 7 where we

observe a great variation of the Weibull parameters from test to test. On

the other hand, we also observe an extremely large scatter in the standard

deviations which would indicate that the number of specimens are not suffi-

1 cient for a reliable determination of the Weibull constants.

In each grouping of tests, the medium size specimen appears in the

greatest number. Using this fact, the constant m is determined for this

specimen size and then used to predict the volume effect of the three specimen

group. The results are shown in Figs. 20 to 25. In all cases, of course,

the curve passes through the center point. The vertical positions of the

points representing the largest and smallest specimens are determined from

I their associated average breaking strengths. Since the mean strength deter-

minations require less data than the determination of m, the data has been

I used to its best possible advantage. In spite of this, however, the results

are not at all satisfactory from a design point of view. The following comments

i apply to the various figures:

Figure 20:

j In view of the reasonable sample size used, it is surprising that even

the weakest link effect is not confirmed. One suspects that each

specimen size has been taken from a different population.

Figures 21 and 22:

The weakest link trend is confirmed. Weibull's prediction of

decreasing scatter with increasing size in not confirmed; however,

the number of specimens used is not satisfactory for a reliable

Idescription of the dispersion. Further, the volume is distributed

over only one decade and any errors which occur here may be
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magnified many times when we extrapolate the volume effects over 3

[or 4 decades as would be desirable for design purposes.

Figure 23:

[Because five specimens are too few to approximate even the mean

strength, the results are meaningless.

Figure 24:
Quantitative predictions are most unsatisfactory.

Figure 25:

This is the best of the series considered. We note that it used one

of the largest sample sizes in the study. Furthermore, since the

preparation of the specimens was undertaken at ARF, one presumes

that the control of the manufacturing process was more closely

supervised. Still, Weibull's scatter trend is not confirmed and the

1quantitative predictions in one decade are not close enough for design.

4. In the study by Weil and Daniel ( 31) previously refered to, one of

the specific objectives was to study the adequacy of the Weibull theory for

predicting failure under conditions of non-uniform stress distribution. This

is accomplished by comparing experimental results for specimens having

various stress gradients but the same risk of rupture according to the
theory. The results of this investigation are presented in Table 3 where we

observe that the mean fracture stress is practically unaffected by the
gradients obtained in the different shape, equal volume bending specimens.

Since the assum ption that the Weibull parameters are constants of the

material is utilized in predicting that no gradient effect will be present, this

test series confirms the Weibull theory within the range of gradients considered.

There is one point which should be raised in regard to the conclusions

presented for the analytical portion of this study. The authors point out that

in the expression for the risk of rupture for the bending members, the only

form in which the specimen dimensions enter is their product, giving rise

to the total volume V. They then make the following statement, "An independent

variation of length, width, and depth of specimen without a change in volume3 does not effect the risk of rupture and, therefore, the latter is independent of

stress gradient. " This conclusion is significant only as a criterion for
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experimental verification, since the risk of rupture for a unit volume is

[assumed not to depend explicitly on the stress gradient. If the authors had

started with the assumption that the unit risk of rupture depended explicitly

on the stress gradient, and then showed that after integration over the beam

volume this dependence disappeared, we would have a very significant

jconclusion indeed.

5. For the material Hydro-Stone Plaster, Table 2 indicates that the

Weiaull parameters are not constants of the material.

6. As our final corn ient, we would like to point out that an almost

insignificant amount. of data is available for checking the Weibull theory under

polyaxial stress states. Such data is badly needed if we are to develop any

type of useful de3ign proceduze. A small effort devoted to torsion can be

found in-Salmassy(17); however, their conclusions are not very decisive.

They make the following cory i.ents:

a) "The torsion test yields reliable fracture data."

1b) "Weibull's statistical theory of strength predicted the effect of
size, and the effects observed in the simple stress states of

teasion, bending, and torsion. Weibull's theory was not adequate,

however, for predicting the effects of combined stresses."

c) "The mean fracture stresses in tension, torsion, and bending

appear to have the same qualitative relationship for many

brittle materials, that is, the fracture stress in bending is higher

tha , that in torsion and is higher in torsion than that in tension.

Weijull's theory predicts this effect in these simple stress states,

qualitatively. Insufficient data are available to indicate whether

Weiull's theory can be used to predict this effect quantitatively."

d) "Under combined stresses, Hydrostone plaster gave an effect

which is opposite to that predicted by WeibullIs theory. "1

e) "Although data on cast iron gives a better correlation with Weibull's

theory than data on Hydro-Stone plaster, they exhibit a similar

deviation from Weibull's theory. The data from these two materials

indicate that some stress other than the principal tensile stress may

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

-74-



I

contribute to the fracture of brittle materials. In essence, this

jmeans that Weibull's basic criterion (his choice of a generalized

stress) for the fracture of an element of a brittle material may be

[. incorrect. Of particular importance may be the role played by

possible localized plastic flow in these supposedly brittle materials.

[ III-B. Extreme Value Statistics

III-B-l. Introduction and History

IUsing Griffith's flaw hypothesis as a starting point, we make the

assumption that the flaws are distributed at random with a certain density

per unit volume. Then, the strength of a specimen subjected to a homogeneous

state of stress is determined by the weakest point in the specimen or by the

smallest value to be found in a sample of size n where n is the number of

flaws. Clearly, n increases as the volume increases and, therefore, the

problem of finding out how the strength depends on the volume of a sample is

equivalent statistically to studying the distribution of the smallest value as a

function of n, the sample size. This statistical problem is treated under the1 (18, 24)
I. statistical theory of extreme values.

It appears that Peirce (4 0 ) was the first investigator to recognize -the

connection between the strength of a specimen and the distribution of smallest

values. His paper in 1926, mentions explicitly that the theoretical work of

Tippett ( 4 1 ) is of importance in obtaining quantitative results concerning the

distribution of breaking strengths. Tippett's paper in 1925, calculated the

Inumerical values of the probabilities for the largest normal value, for different

sample sizes up to one thousand, and the mean range for all normal values

I from two to one thousand. Tippett's Tables are the fundamental tool for all
practical applications of the largest value for a normal distribution.

jThe fact that most of the studies of extreme values started from this

distribution hampered the development, since none of the fundamental theorenis

of extreme values are related, in a sim ple way, to the normal distribution.

The first paper based on the concept of a type of initial distributions different

from the normal one is due to M. Frechet in 1927. He was the first to obtain

an asymptotic distribution of the largest value. Frechet's paper, published

in a remote journal, apparently never gained the recognition it merited. This
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was due to the fact that R. A. Fisher and L. H. C. Tippett published in the

j next year, 1928, the paper that is now referred to in all works on extreme

values. They found again, independently of Fr~chet, his asymptotic distri-[bution, and constructed two other asymptotes. They especially stressed the

extremely slow convergence of the distribution of the largest normal value

toward its asymptote, and thus showed the reason for the relative sterility

of all previous endeavors.

The theory of extreme values ought to be centered about the exponential

distribution because it leads to simple expressions of the most important

results. The results obtained from this starting point can easily be generalized.

Gumbel started from this basis and derived the asymptotic distribution of the
th

mr extreme value which covered Fisher's distribution as a special case.

In 1936, R. Von Mises showed the conditions under which the three asymptotes

established by Fisher and Tippett are valid.

Using the theoretical work of the above authors, Gumbel studied many
practical applications of extreme value theory; for example, the oldest ages,

the distances in time between radioactive emissions, and his famous treatment

of floods. Extreme value procedures have been successfully applied to an

extensive study of the extreme temperatures and atmospheric pressures in

Norway by N. A. Barricelli, and in the United States, to fracture problems

by B. Epstein. ( 2 2 42, 43) Epstein's three, almost identical papers, are

used estensively in the following discussion of breaking strength.

III-B-2. Asymptotic Theory of Extreme Values

Insofar as applications of the statistical theory to the fracture problem

are concerned, one is interested primarily in the distribution of the smallest

value in samples of size n, for large values of n. Let F(x) be the probability

that the value of the variate X selected randomly from a population is less

than a certain x, and let f(x) = F'(x) be the density of probability, henceforth

called the initial distribution. Now, the probability that Xzx is given by

S- F(x). Then the probability that n independent observations of X are all
greater than or equal to x is given by I - F(x)] n. This is clearly the

I probability for x to be the smallest among n independent observations. Then

the probability that x is not the smallest value in n independent observations
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is

I But, this is just another way of describing the distribution of smallest values

Gn(x), since Gn(x) is the probability of obtaining a "smallest value" less than

I or equal to x. Thus, the cumulative distribution function of the smallest value

in samples of size n is

G(x) =I- [I- F(x)I n (60)

1 The associated probability derasity function then becom es,

gn(x) = nf(x) [I - F(x)] n-I (61)

If the initial distribution is known, Eqs. 60 and 61 already enable one to give

graphical descriptions of gn(x) and Gn(x ) . The means and moments of gn(x)

Imay be obtained; but, as a rule this leads to integrals that can only be

evaluated by numerical methods. The mode of gn(x), or the most probable

value of the smallest value in samples of size n, can be found by finding the

maximum of gn(x), i. e., by solving the equation g:(x) = 0. If a solution

j exists it may be written in the form

[f 2(x) (n-1) = f(xj [F(xn) (62)

If the initial distribution is limited, the distributiop of the smallest value

.. decreases monotonically, and no mode in the proper sense exists. The mode

of the smallest value in samples of size n have computed by Epstein and his

results are presented in Table 8, column (a) for various common probability

density functions.

Equations 60, 61, and 62 are adequate if one is merely interested in

giving a crude graphical description of the distribution of the smallest value

in samples of size n drawn from a parent population f(x). It is necessary to

go further, however, if one wishes to study the distribution of the smallest-
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values quantitatively, particularly for large values of n. The shortcomings

of these equations for large values of n may be circumvented by the intro-

duction of a convenient new variable defined as

- nFx) (63)

I In terms of this variable Gn (x) becomes,

Hn) 1 1 - 1164)
n ~ n

The asymptotic cumulative probability function H( ) as n -Voo then becomes

H(9) lira Hn = 1 - e -  (65)
n * oo

I The associated probability density function, h(S), can be found fromh(h(H
h1s) = H 1 )I. -

hlg= e "1 (66)

[ Now, using Eqs. 65 and 66, one can completely specify the distribution of x,

the smallest value in samples of size n for large values of n. We shall

consider several. examples of such computations.

Example 1: Rectangular Distribution

The initial distribution is
1

f(x) =- afax_ b

(67)
f(x) = 0 elsewhere

Now, F(x) becomes,

dx x-a, -a b-F(x) =-a - x-b (68)
ba b-a

a
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I Using Eq. 60, the cumulative distribution of smallest values becomes

(X) 1 -x-a axt~

Gn(= I -- " aax-b (69)

and the distribution gn(x), from Eq. 61, is

j g =(x) n i a-..] a _x _b (70)

The mode or the most probable value of the smallest value in samples of
size n, x , is found by inspection of Eq. 70 since the distribution is limited.

i Hence,

X =a (71)! n

To get an approximation to the distribution of smallest values in samples of

I size n for large n, we introduce F with Eq. 63; thus,

i "=n F(x) = n Ix-a (72)

or solving for x,

x= a + )n(b-a) (73)

This expression gives us the distribution of x for large n where is

L distributed with the probability density function

h( e9 " (74)

We obtain the typical distribution shown in Fig. 26 by assuming a value of

1 and calculating the strength x from Eq. 73 and its associated frequency

h(j ) from Eq. 74Cwhere we note that x and have the same frequency.

i The asymptotic distributions of x for various common initial distri-

butions are shown in Table 8, column (b).
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Example 2: Laplace Distribution

When the initial distributioris that of Laplace, the distribution of

smallest values in samples of size n (for n large) is given in Table 8,

Icolumn (b). We note, here, that the frequency of x depends on the frequency

of logg rather than g, i. e.,I
x= - log+ Alog (75)1

Letting I = log we can find the distribution of log,:- from the known

jcumulative distribution function of g':

H(g) = 1- e "  (65)

Changing the variable to ( g e ), the cumulative distribution function

becomes

J( 9 ) = 1 - e (76)

Differentiating to find the frequency distribution, we have,

I r-e
j( )-=e e e l -00 CqC > (77)

I which gives the frequency distribution of log . Then the distribtuion of x

becomes

xn2 L - 0log.- + Aq (78)

where q is distributed as eq e . To plot the frequency curves shown in

Fig. 27 for the Laplace distribution, one assumes a value for q , and calculates

x from Eq. 78 and the associated frequency j( q ) from Eq. 77. We observe

that j( 9 ) is strongly skewed to the left; thus, the Gistribution of flaw

I strengths following the Laplace law, Gaussian law, or more generally one of

the type Ae "Bx " tp for large values of Ix- tuI (where A, B,/. , p are

positive constants) will be negatively skewed (long tail to left).

In order to form quantitative judgments about the mean values of x
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I
and the dispersion of x as measured by the variance of x, it is useful to

calculate the first moment about zero and the second moment about the

mean. We recall that

mean E(x) x f(x) dx (79)

1 2x 2c ffx)dx [-2(80d)
variance D Wx 11. j1x-E) fd) (0

where D is the standard deviation. We shall demonstrate the method of

calculation in the following example.

Example 3: E (log 1) and D2 (log 4)

To obtain the mean and variance for the distributions of x tabulated

in Table 8, column (b), it is only necessary to consider the random components

I- of x, that is, . Thus, for = log we obtain,

0.0 coo
E( q (e q e -eq ) d  = (log z) ezdz = -. 577 (81)

C- 0

where we have introduced the change in variable = log z. Also,

D D2( 2 (e q -e'e )d - E 2 ( q) f(log z)2e-zdz - E2

= Tr /6 (82)

Then, it follows for the Laplace case that

n

xmean = /A - ,log 7 - 0. 557 (83)

jt and,

D2 (x) =f-(x.xmean) 2 f(x) dx =J2Y - mean) 2 dxI 2 (84)
6
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If we compute the quantities E( ), E(1 / ), and E( 1/ ), and also the

. corresponding D2 ,s, we obtain the results shown in Table 8, column (c).

It is clear how one can interpret Table 8, column (c) physically if

one is interested in finding out the consequences of various assumptions

about the initial distributions of strengths due to flaws. For instance, a

rectangular assumption would imply that no dependence on volume exists; a

Chauchy distribution would lead to results which are physically unreasonable.

The Laplace, Gaussian, or Weibull assumptions all imply that the strength

does decrease with increasing volume. Of these, the Laplace is the only

* case where the distribution does not become narrower with increasing volume.

III-B-3. The Distribution of Exceedances

In all of the cases discussed in the previous section, the forecast of

extreme values is based on the knowledge of the initial distribution.

j However, there are other methods of forecast which require only the

continuity of the initial variate. These methods do not require a knowledge

of the initial distribution - they are distribution-free. However, instead of

the size of the extremes, they deal only with their frequencies. Such

knowledge is sometimes sufficient. If a flood destroys a crop, it does not

matter whether the soil is cvered with an inch of water or ten feet of water.

Similarly, if the strength of a men'ber is exceeded, it may not matter whether

it is exceeded by a small amount or a large amount since it fails in either

case. Then basically, we want to forecast the number of cases surpassing

a given severity within the next N trials. The methods for doing this lead

to a forecast by interpolatib,, based on the essential and reasonable

assumptions that the forthcoming trials are taken from the same population

as the prior ones and that the observations are independent.

Assume that we have made n observations on any continuous variate

x. Starting with the value of the largest observation, we arrange the n

observations in decreasing order. The rank m of the largest value is m = 1,

and for the smallest value m = n. Therefore, the mth observation is the
th th

m largest observation. We ask: In how many cases y, will the past m

observation xm be equaled or exceeded in N future trials? The number of

cases y, called the number of exceedances, is a new statistical variate
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having a distribution w (a, m, N, y) where the n, m, and N enter as

parameters. This distribution, derived by H. A. Thomas, is

I w=,m Ny m N~l
! n , mjN I

w(n, m,N,y) 'm -I'.I= w(n, n-m+l, N, N-y) (85)I N+n) N~ni)

or-

nl.N! (m+y-l) Nxnm!(

y) (r -1)! (n-rm)! (N-y)! (N+n)(

where the original sample size n may be small, or of the same magnitude

as the future sample size N. Nothing is assumed known about the distri-

• bution of the initial variate x except its continuity. The conditions for the

positive intergers m and y, and for the probability w(y) are

1 m 5 n

0 yc N  (87)

L w(y)=I 0
We observe that although no assumption about symmetry of the

initial distribution was made, the distribution in Eq. 85 possesses two

symmetries: The probability that the mth largest among n past observations
will be exceeded y times in N future trials is equal to the probability that yI th
among N future trials will fall short of the m smallest among n past

observations and to the probability that the past mth value from the bottom

I will be exceeded N-y times.

As an example of Eq. 85, we consider the 125 annual floods of the

Rhine observed in Basel from 1808 to 1932 taken in groups of five. We

consider the first group of five as our sample n; the largest flood in this

jgroup was 3400 cubic meters per second. In Fig. 28 we show the observed

number of exceedances of this flood in each of the 24 subsequent groups of
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five years observed, together with the theoretical values obtained from Eq.

I 85. Note that each future sample of 5 years has a probability of having y

exceedances that is given by w(5, m, 5, y). Since we are interested in the

I exceedances of the largest flood, m = 1. Thus, we find

y w(5, 1, 5, y) 24w(y

0 50000 12
j 1 27778 6.66

2 13889 3.33
3 05952 1.43

4 .01984 .476
5 .00397 .095

where 24w(y) is the number of groups having values exceeding the original

group.

The mean number of exceedances ym over the mt h largest value in

I. N future trials is

- N
Ym i ru (88)

I The mean number of exceedances over the smallest value (m = n) is n
times the mean number of exceedances over the largest value (m = 1). The
variances c' and d2 of the number of exceedances over the m largest

m m
and the mtt h smallest values are

d 2 = n-_L N (N+n+l) d 2 (89)
m (n+l)2  n+2 m

IThe variances increase with N and diminish, as usual, with increasing n.
The variance is maximum for m = (n+l)/2, i.e., for the median of the

original observations. Thg quotient of the variances of the number of
exceedances over the median and over the extremes is

d 62 2_ d__
.Cr+l)/2 .n+_) (n+l)/2

'12 4n 2 (90)
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Consequently, the variance of the number of exceedances over the median is

about n/4 times as large as the variances of the number of exceedances over

the extremes. In this sense, the extremes are more reliable than the median,

jand this quality increases with sample size.

Law of Rare Exceedances:

iWe now consider briefly the asymptotic behavior of the distribution

of Eq. 85. If both n and N are large, we have to distinguish between two

11 cases. In the first, the rank m increases with n such that the quotient m/n

remains constant, and the m values remain near the median. In the second

case, m remains constant such that m<<n, and the mth values are extremes.

In the first case, let n = N = 2k - 1, where k is large. Then m = k

is the rank of the median of the initial distribution. The use of Stirling's

formula leads to the following simple result: The number of exceedances
I over the median, m = k, of a large sample of size 2k- i, 2k - I future

trials, is asymptotically normally distributed with mean and variance equal

to k. This distribution may be called the distribution of normal exceedances.

It may be stressed that the variance in this case is of the order n/2, i. e.,

1 very large.

In the second case, let N and n be large, and m and y be small. From

IEq. 85 we obtain for n = N the probability

wyn n y = w(m, y) = w(n, n-m+l, n, n-y) (91)

that the m largest (or smallest) value will be exceeded y times (or n-y

I times) in n future trials, independently of n. Since m is small compared

to n, the probabilities Eq. 91 may be called the distribution of rare exceed-

Iances. For y = 0, we obtain from Eq. 91 the probability

Sw(n, m, n, o) = w(n, n-m+ , n, n) (92)

that the largest (or smallest) m extreme value is never (or always) exceeded.

The mean y and the'variance d"2 become from Eqs. 88 and 89
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-m; = = 2 M (93)
th

The mean number of exceedances over the mth largest value is the rank m

itself. The distribution of rare exceedances is shown in Fig. 29. For m
greater than unity, the distribution of rare exceedances has two modes,

namely, m-I and m-2. For m = 1 it has one mode. For n increasing,

the probabilities at the mode diminish, the distributions spread and, at the

same time, become less asymmetrical. For large values of m, the distri-

bution of rare exceedances, for a standardized variate z = (y-y)/d, converges

toward a normal distribution.

The above discussion was taken from the two works of Gumbel ( 1 8 , 24)

I where a complete treatment of exceedances may be found. As far as can be

determined by this author, these methods have not been applied to the problem

of brittle design. In all of the weakest link theories proposed for the fracture

problem, an initial assumption is made concerning the initial distribution of

jflaws or distribution of sizes of cracks. Adequate experimental data of the

right type must be available before one can decide in a reasonably rigorous

way what the underlying distribution laws are. At the present time this

cannot be done. Hence, it seems reasonable to investigate the possibility of

using distribution-free methods in our design procedures.

III-C. Other Weakest Link Theories

In the ensuing discussion, we will consider only the situation where
we have an iolropic state of stress. The generalizations of any weakest link
theory, including those discussed under Extreme Value Statistics, may be

applied to any structure and stress state using the notions described in

section III-A-Z.

III-C-l. Mugele:

In 1951, R. A. Mugele ( 4 4 ) presented the following interesting1- discussion of Weibull's paper in Reference 19.

L "The author's treatment is definitely a contribution to the literature

on distribution functions. The range of fields treated in his examples is also

impressive.
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However, the reason for introducing the minimum value xu , and

[ ignoring the maximum xm is not entirely clear. Probably it relates to the

original applications ......

Now, for such a case as Fig. 2 (Size distribution of fly-ash) of the

paper, one would expect the maximum particle to be more tangible, and also

more significant practically, than the minimum.

Incorporation of both a maximum and a minimum value of x will

bring Eq. 20 into the form

F(x) = I - e'k x- (94)

which will again reduce to Eq. 20 as xm becomes infinite, and to the Rosin-

Rammler (45) type of equation as xu vanishes.

Of course, one may start with any distribution function where the

argument has infinite range, and convert it to one where the range is finite.

I This has been illustrated in the case of the log-normal distribution by Van

Uvan(4 6 ) and more recently by Mugele and Evans! 4 7 ) The latter reference

also gives a critical review of the Rosin-Rammler and other distribution

functions." (Unfortunately, the present author has not yet seen this latter

I reference. )
In 1958, J. A. Kies introduced the distribution given in Eq. 94

j without any mention of the above authors. He even specializes the function

for glass by assuming xu = 0, as in the Rosin-Rammler case. Apparently,

both Mugele and Kies find it objectionable that Weibull's postulate has the

feature that it predicts full probability of failure only when the applied stress

reaches an infinite value. Accordingly to Eq. 94, a full probability of fracture

will be reached when the applied stress is equal to Xm, this value designating

the "upper fracture strength" (and not necessarily the theoretical strength)

I of the material.

Using the techniques described in the section on Extreme Value

I Statistics, it is straightforward to study the characteristics of this new

distribution function. It is obvious from the outset that the gross features
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I
of the theory will not be dissimilar to those of the Weibull function. We
hasten to point out, however, that the numerical values of the constants

entering Eq. 94 will be different than the corresponding Weibull parameters.

I Kies makes the following comments concerning Eq. 94: "For samples

of sufficiently small size and high strength the new model has a practical
jadvantage. For sufficiently large size specimens having strengths negligible

in comparison with the upper limiting strength the Weibull function is adequateIand more convenient. 1By greater practical advantage, the author explains
that the coefficient m in the new function has a greater degree of constancyIthan in the Weibull function. The experience at ARF indicates that one can

obtain more closed form solutions using the Weibull function than that given

by Eq. 94. Furtherm ore, for the structures considered in ceramic, the

sizes are usually large and the strengths are about 1/100 of the theoretical

strength.

III-C-2. Normal Distribution of Flaws

In 1926, Peirce ( 4 0 ) published a paper on the strength of cotton yarn.
In order to develop reliable procedures for the testing of yarn it was essential
that one study the effect of certain variables which one might expect on a

priori grounds to be capable of greatly influencing the results unless properly
controlled. Am ong the factors considered was the length of the specimen.

He observed that if specimens of some fixed length L broke under normally
distributed loads, then specimens of length nL, where n is an interger

jgreater than one, will break under loads whose distribution is negatively

skewed the larger the value of n. In order to account for this phenomenon,

Peirce was led to the formulation of the chain model and to the equivalent

statistical problem.

j Weibull's work in 1939 used essentially the same ideas as Peirce only

he did not, as we have seen, assume a Gaussian distribution of strength for

his link or unit volume. Shortly after Weibull's work appeared the RussianI Kntoova(49) kladKnroa(50)physicists, Kontorova and Frenkel and Kontorova 0 , published papers

which again reiterate the weakest link concept. They consider crystalline

specimens with flaws distributed at random throughout the specimens, thus
giving a distribution of strengths throughout the specimens. They assume,
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as did Peirce, that these strengths are normally distributed. Starting with
the distribution of flaw strengths x given by the probability density function,

f f(x) e'I x 2 c" )

they found the most probable value of the strength of specimens of volume V

large enough to contain many flaws is approximately given by

/ - dV2 logS'V - 2 log Z-V7 (96)

where T is the average number of flaws per cubic centimeter of the material.

We, of course, recognize that the more precise form is given in Table 8,

column (a), item 4, i.e.,
I.

d/ lg V+ d" log lo&XV + los 41T 97
- ~~(97)

Frenkel and Kontorova went to considerable length to emphasize that
their approach is to be preferred to that of Weibull because his assumption

for a cumulative probability is devoid of physical m eaning and because he[does not realize that he is dealing with a situation where essentially it is the

wve kes.t link which determines the breaking strength of a specimen. Clearly,

I. these criticisms are not justified. The present state of knowledge is not

sufficiently precise to say what the initial distribution of flaws should be;

consequently, a guess at f(x) is no better than a guess at F(x). There are

enough free parameters in both assumptions to give enough freedom to fit
existing data reasonably well.

III-C-3. Fisher and Hollomon

In 1947 the two metallurgists, J. C. Fisher and J. H. Hollomon' 5 1 ),
proposed a statistical theory of fracture based on the idea that the material

under study is an elastic solid containing many thin disc-like cracks with1_ elliptical cross-sections. The major axes of the ellipses are assumed to be

of size x possessing distribution p(x) = he-hx, x-0. Using the methods of

1. the section on Extreme Value Statistics, this distribution can be handled with

great simplicity. As a matter of fact, Epstein( 4 3 ) treats this case as an
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example in distributions of largest values in samples of size n.

In his paper on the strength of glass, Kies , compares the Fisher-

Hollomon theory with experimental results and concludes that there is little

a gye eime nt.

III-C-4. Other Theories

There are a number of other investigators who have considered the

statistical theories of fracture. Since we have only briefly reviewed their

papers in this effort, we shall merely indicate where some of their work

may be found. The papers and reports of A. E. Ruark and N. Rosen (5 2 ),
(53) (54)

J. Tucker ( 5 , and J. P. Frankel are referenced in the bibliography.

i

L

I-

I
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IV. PARALLEL MODEL

IV-A. Introduction

The parallel model has received only a fraction of the attention which

has been devotei to the series or weakest link model. Oddly enough, Peirce
(40) , who apparently introduced the series model, was also first to consider

the parallel model; and furthermore, he did so in the same paper. Consider-

ing the behavior of bundles, he deals exhaustively with the underlying

physical considerations and derives useful formulae for the strength of large

bundles.

The wider significance of the problem was also recogni ;ed by Peirce.

He points out that a study of the strength properties of certain materials must

involve considerations fundamentally similar to those arising in the theory

of bundles (called by Peirce "composite specimens"), since each element of

Ithe material may be thought of as made up of subelements arranged both in

series and parallel along a particular direction of stress. We shall look at

a recent extension of Peirce's work in the next section.

In section III-A-3-e-i,. we indicated that Weibull found it necessary

[_ to introduce the possibility of a parallel model to explain certain of his test

results. He considered the behavior of materials composed of independent

parallel elements and called such cases "incoherent irregularity". We

record the following comment by H. E. Daniels(55) concerning the validity

of Weibull's (35) work.

"Unfortunately there appears to be a flaw in his discussion of

probabilities, and formulae are obtained which are open to question. I

suggest that his equations (136) and (137) should read

dS'2/2 = 2 [S(Zd) -S(d)]dS(d)

and

dS" 2/2 = 2S(d) dS (2d)1.
respectively. The final expression for S2S2 = Si F1 tben ar.....s with the
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present formula (9. 1) for n = 2.

Ii Since the formulae referred to by Daniels are fundamental to Weibull's

subsequent development of the subject, we shall look no further at this

I effort.

In 1945, Daniels wrote a beautiful paper on the statistical theory of
the strength of bundles of threads. He assumes that the breaking strengths

x have a continuous probability function F(x) so that

Iix1-F(x ,=0 (98)

His physical model of rupture is as follows: After rupture of one thread the

load is supported by the remaining threads until the next one breaks, and

so on. Let S be the load and let xi (i = 1, 2, 3... n) be the breaking strengths

of the individual threads arranged in decreasing order of magnitude, then

L_ the bundle breaks if

0 x.-C S/n; xiI "x. - SI(n-i+l). (99)L 1 iI "

Let t be the largest value of S for which these inequalities are not all true.
Then t is a random variate representing the breaking load of the bundles of

n threads. Finally, let A be the maximum of x [1 - F(x) I then Daniels
proves that for large n the value t is normally distributed with mean

x_ [l - )] o(100)

and variance

S2( ) = n 2  F) ()] (101)

In other words, Daniels has shown that if a load S on a bundle of n1. threads is divided so that each thread feels S/n, the bundle will not break

under load S if, and only if, there exists an interger k _n such that k among

the threads have strengths exceeding S/k. It turns out that, whereas the
distribution of strengths of single long strands is negatively skewed, the
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distribution of strengths of bundles of n threads is asymptotically normal

I. for large n under fairly general assumptions about the distribution of

strengths of individual strands.

IIV-B. Examples of Strength Computations for Bundles of Threads

1. Using Weibull's distribution function for xu = 0, the mean

strength of a bundle of n threads may be found from Eq. 100. Taking the

distribution function of one thread as

V Xm
F(x) = 1-e ' I% (1OZ)

we obtain,

x [1 - F(x)] = xev x 7- m  (1 03)

1.- where V is the volume of a single fiber. The x which maximizes this quantity

is found from,

-- V-x xVmx in-i x in

dx 0V.~ 0 x v() (14

=0

or

=x o ( )In (105)

I Then using Eq. 100,

S = nx °  M e (106)

The variance from Eq. 101 becomes

Cr ( ) = iF(i) S= x ° ( I e nx °  /M e1/m
I = o V e- m -Vm

enx 1e me ) (107)
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2. Following Wallhaus (2 9 ), we shall go back to first principles and

solve the same problem in essentially the same manner as done by Peirce.

A bundle of fibers is defined to be any number of parallel filaments

which are not interwoven. To simplify the analysis the assumtion is made

that all fibers are under equal tension during the entire loading cycle to

fracture. It is also convenient to make the assumption that all fibers have

the same cross sectional area.

The mechanisms which operate to cause failure of the bundle can be

best described by considering a constantly increasing load to be applied to a

bundle of n fibers. As the load increases, the weakest fiber in the bundle

will break causing its load to be equally redistributed among the remaining

n-i fibers in the bundle. This added increment of load may cause another

fiber to fail, in which case the progressive fracture of the bundle may continue

without any additional increment of the applied load; or the bundle may again

reach a state of equillibrium. When the bundle is in a state of equillibrium,

the applied load will continue to increase until an unstable state, which leads

to progressive failure of the entire bundle, is realized.

Assume that n-r fibers have failed when the constantly increasing

L. load possesses a magnitude P. Let the stress in the bundle corresponding

to P be x. Then,I.
P = xA (108)1. r

where A = cross sectional area of the remaining r fibers

if A n  cross sectional area of the original n fibers

then

A
r r (109)
n A

n

Substituting A r from Eq. 22 into Eq. 21 yields,

P= x-A (110)n n
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Since F(x) is defined as the probability of failure at some stress less than

or equal to x, the number of broken fibers at stress x is nF(x) thus,

nF(x) = n-r n ... large (111)

I Making this substitution in Eq. 110 yields

P= xAn [1-F(x)] (112)

Replacing F(x) in Eq. 112 by the Weibull function given in Eq. 102,

the load P is found to be

xA ne-Vx (113)

[To find the x which maximizes P we differentiate this expression and set

the result equal to zero, thus we obtain

x = x °  
(114)

Ias we previously did in example 1. The maximum load which can be applied

to a bundle is then obtained by substituting Eq. 114 into 113.

P =x A ( ) 1i e-/r (115)

This result is the same as Eq. 106 when n is replaced by the area of n

threads. This approach does not enable us to compute the distribution of P,

indeed, it does not indicate that there is a distribution of P.

Wallhaus (2 9 ) compared the average load given by Eq. 115 for the

bundle to the average load obtained from the Weibull theory for a monolithic

tension member of the same area and length. He concludes in his Eq. 36

that the monolithic member (series) is stronger than the equivalent bundle

(parallel). However, it appears that he misinterpreted the symbol V used

in our Eq. 115 as the total volume of the member rather than the volume of

one fiber or thread. His conclusion, and consequently, his Fig. 20 are
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I
erroneous.

In closing this chapter, it is well to point out again that most
materials are really some combination of the series model and the parallel

model. So far, the author has uncovered no treatment in the literature
which deals with this combined model. From the designers point of view it

I might be possibLe to lower our sights a bit and begin by developing a conser-
vative description rather than a complete description of the series-parallel

j. material.

11
I

L

I

1
i
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V. ASPECTS OF THE DESIGN PROBLEM

I V-A. Test Specimens

V-A-i. Tension Test

To obtain the stress-strain relationship for a material, it is necessary

to have some method of relating the load on the specimen to the stress at

some point. In general, the determination of the relationship between loadI and stress in a solid body requires a knowledge of the material properties

which is precisely what we are trying to find. Fortunately, there exists

some special combinations of loading and geometry which enable one to relate

load to stress by appealing only to equilibrium considerations. Examples of

such situations are provided by thin walled cylinder's under torsion or internal
pressure and odd-shaped solids under hydrostatic prelssure and prismatic

rods under uniformly applied axial end loads. Certainly, in this group the

prismatic rod would seem to be the least involved method of producing

tension. However, it is extremely difficult to insure a uniform end pressure

and it is here that we must make an appeal to a physical assumption called

Saint-Venant's principle. This principle essentially states that all stress

distributions on the end of the bar which are statically equivalent to the

uniform pressure will produce a uniform stress .in the central regions of the

bar if the bar is sufficiently long.

ISaint Venant's principle enables us to produce any number of varieties

of grips and flanged ends and still get o' = Force/Central Area. However,f. any moment transmitted to the ends of the rod disqualifies the application of

the principle since the presence of end moments makes it impossible to
jhave a stress distribution at the ends which is statically equivalent to a

uniform pressure. In practice, it is an exacting feat to eliminate the terminal
moments. One of the studies in Reference 15 considered the problern of

performing tension tests; it was found that with careful alignment of specimens

in the grips and the use of crushable shims, the bending strains were still as

much as 10 percent of the total strain. Certainly when hundreds of specimens
are required for statistical studies, such a test becomes impractical.

Recognizing the difficulties of performing reliable tensioi tests even

at room temperatures, many investigators have proposed other tests for
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studying material behavior which make use of the assumption that the stress

I i is a linear function of the strain. Examples of such tests are shown in Fig.

30. We shall briefly comment on the various specimens and techniques.

( V-A-2. Diametrical - Compression Test ( 5 6 )

The diametrical-compression test is used extensively in Europe,

South America and Japan for measuring the tensile strength of concrete and

is usually referred to as the Brazilian Tension Test. The technique isIbased on the state of stress developed when a cylindrical specimen is com-

pressed diametrically between two flat platens. This loading produces a

I biaxial stress distribution within the specimen. Stresses at any point in a

cross section can be calculated by elastic theory. Of major interest are the

maximum tensile stresses which act across the loaded diameter and which

have constant magnitude.

a' DtIT (116)

j where P = applied load

D = specimen diameter

j t = specimen thickness

[Fracture must be initiated by these tensile stresses if the test is to yield

useful results.

( In addition to tensile stresses, compressive stresses act vertically

along the loaded diameter. These stresses vary in magnitude along the6P
loaded diameter from a minimu.m of ya at the center to infinitely higher
values immediately under the loads. The high shears and compressive

stresses under the loads must be reduced if failure is to begin in tension.

I While various techniques have been tried to eliminate these undesirable

modes of failure, it is not always possible to do so and the difficulties are

l even greater at elevated temperature.

The disk technique is an improvement over the uniaxial test because

[ the need for sample holders and sample alignment for homogeneous rnate-

rials is eliminated. The sample aligns itself between the platens and the
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Theta Specimen

I7 Unioxiai Tension Specimens

.....

'I Truss-Boom Specimen

j Two Holed Disk

Dog one lending Specimen

Ring Test .M .

B rezi lion Test

I Figure 30
VARIOUS METHODS OF DETERMINING STRENGTH
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shapes can be easily tested in a simple furnace without elaborate testing

Lfixtures and equipment temperature protection,

V-A-3. Brittle Ring Test ( 5 7 )

[- This is a further development of the disk technique and consists of

placing a ring specimen under diametrical-compressive loading. Loading

is obtained by compressing the specimen using two flat parallel platens.

Maximum tensile stresses are developed on the inner periphery of the ring

in the loading plane. Tension, to a lesser degree, is also developed on the

transverse diameter of the outer periphery. Compressive stresses are

developed on the opposite sides oi the neutral axes of these same pointg-

however, these stresses may be neglected since failure will always be caused

by the maximum tensile stress on the inner periphery.

The ring specimen has all the advantages of the disk specimen and

it will always fail due to maximum tensile stress at lower loads. However,

one serious drawback is that it has a variable critical stress field. Experi-

ments with this procedure have produced data which are somewhat higher

than that normally obtained from uniaxial tests. Great care should be

exercised when using any of the special tests for materials suspected of

I being influenced by stress gradients.

V-A-4. Theta Specimen ( 5 8 )

The theta specimen, a further development of the ring test, was

developed so that uniaxial tension of a brittle material could be obtained

without alignment problems. it. also removes the effect due to variable

stress fields in determining ultimate tensile strength.

Photoelastic analyses of the theta specimen have shown that the

maximum tensile stress occurs in the bar, that the stress distribution in the

Ibar is uniform, and that the fillets at the ends of the bar do not produce any

undesirable stress concentrations.

For the normal theta design the primary failure occurs in the bar.

The photoelastic pattern is sufficient evidence of this fact and most specimens

tested failed with a single break in the bar.

Experimental results of the effect of stress gradients comparing the
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ring and theta specimen data have shown that the theta specimen is a better

indirect method than the ring for determining the strength of brittle speci-

mens. Its major drawback is that it is very sensitive to dimensional changes.

I V-A-5. Truss-Beam Specimen

The principfe governing the operation of the truss-beam specimenis

Ithe same as that which operates in the conventional Queen Post truss. The

upper portion of the member acts like a beam and the lower portion acts like

a tension tie rod. Using the ordinary truss beam analysis to predict the load

in the lower portion of the specimen yielded results which were 1. 4 percent

7higher than found using strain gages. This specimen appears to have the

advantage that a large gage section is subjected to uniform stress. The

specimen has only recently been developed by Bortz( 5 9 ) as part of his thesis
requirements, and consequently, little actual experience is available for the

application of this specimen to ceramics.

V-A-6. Dogbone Specimen

The prismatic bending specimen is perhaps the most attractive

specimen next to the prismatic tension specimen. However, like the tension

specimen, it has a number of shortcomings. The most important of these is

illustrated in Fig. 31. The friction forces shown provide a resisting couple

which can increase the apparent strength of the specimen by as much as 30

percent. Clearly this resistance due to friction is proportional to the true

fracture loads; consequently, from the statistical point of view we introduce

a systematic error when we use this specimen without rollers or other

friction reducing methods. Unfortunately, the obvious means of reducing or

eliminating the friction do not work at very high temperatures. The dogbone

specimen was developed to control the undesirable effects of friction. By

placinug pins at the neutral axis we essentially reduce the moment arm of the

friction forces shown in Fig. 31 from h, the beam depth, to the radius of the

pins. To avoid premature fracture due to the stress conditions around the

pins, the ends of the specimen have been "beefed up".

On a prismatic bending member subjected to the same loading as

shown in Fig. 30 for the dogbone specimen, it is quite common to get failures

outside the pure bending region. It has been suggested that specimens which
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EFFECT OF FRICTION FORCES ON PURE BENDING
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do not fail in the gage length (between the loads) be removed from the sample

space. One cannot overestimate the possible danger of such a procedure.

If the stronger specimens are excluded from the sample space by such a

l practice, it will only take a few such exclusions to drastically influence both
the mean and the standard deviation of the sample.

11V-A-7. Implications to Design:

It is the primary objective of design to generalize the simple to the

complex. Normally, the first step is to predict the behavior of a bending

member from the known behavior of a tension member. In brittle design

Ithe problem is immediately more involved since we must go to a great deal

of trouble just to go from an ideal small tension specimen to an ideal large
jtension specimen. Practically however, we find the situation is still much

worse since we have to face enormous problems just to go from one tension

specimen to another of the same size. How far are we then from the predic-

tion of bending behavior from results obtained in "simple" tension? It we
have so much trouble obtaining a known loading on a specimen under the

best laboratory conditions, what shall we do when we try to find stresses

under service conditions?

I. V-B. Loading

In a generalized sense, the normal procedure in "ductile design" is
to proportion a structure in such a way that the assumed stress distribution
nowhere exceeds the yield stress. When this is done, our plasticity

theorems tell us that our design is safe because we have designed in such

a way that the final structure has a statically admissible state of stress.

IThe fact that the actual state of stress may be different than the assumed one

is of no concern to the designer. On the other hand, in brittle design it is[mandatory that the designer know the exact stress conditions throughout the

structure. Failure to assess these stresses is certainly one of the major

i reasons why brittle design is so unsuccessful.

In the case of minimum weight design, an exact knowledge of the

I loading becomes an even more critical requirement. To demonstrate this

characteristic of minimum weight design we shall consider the simple example

of the ideal, webless, constant strength beam shown in Fib. 32. We assume
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that the flange area of this beam is distributed in such a way that the maximum

fiber stress at every station along the beam is equal to a constant, say the

yield stress.. Clearly, when the depth of such a beam is fixed, the flange

Iarea distribution looks like the moment diagram. For the uniform loading

considered, it is apparent that a zero area station appears somewhere in
the simply supported section. We note that for any other loading condition,

large or small, the material in the vicinity of the zero area section is over

I stressed. Certainly, for the case shown here the entire structure collapses
I- under any other load system. In this case, if another loading is going to act

on this beam, we must design for it explicitly. If our overhanging beam was

a simple prismatic beam, there would be infinitely many load systems
which could be successfully supported.

IIf a number of different loadings act during the service history of a

constant strength beam, the beam can be proportioned by superimposing each

expected moment diagram and basing the flange area on the resulting envelop

diagram. In this situation every station of the beam will feel the same

I maximum fiber stress, but, at different times. The probability of survival
of such a beam is determined only from the maximum conditions that will

I occur at every station; hence, the member is analyzed as if it were under a

pure moment. Here, the entire bottom flange can be treated using the Weibull

theory for a uniform tension member,

V-C. Design Modification

I This discussion is centered around Eq. 30, i.e.,

P P2= Pi(Vl IVZ(1 ) (30)

When the resistance P1 is too small, how may the designer modify his

design? We observe that for P to be greater than P, 9 Pl must be

multiplied by a factor greater than unity, therefore we require that

The following actions may be taken by the designer depending upon the value
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of m:

m Modification of V 1to Increase Capacity

m .€ 312 decrease V1. i.e., make V 2 -C v I
m =3/2 nothing can be done

m - 3/2 increase V1. i.e., make V2 1-V1

From the design point of view, the implications of this simple example are

both surprising and far reaching. Apparently there are situations where

"beefing up" a design weakens it.

I. Warning:

In many situations where the Weibull distribution function is adequate
for analysis, it is entirely unsatisfactory for design. Let us consider, for

example, the case where m -c 3/2. Weibull's theory accurately describesIthe increase in strength with decreasing volume as long as the size of the

volume is reasonable. However, we observe that when V -+ 0, the tensile

1 capacity becomes infinite, i. e., P 2--oo. Clearly, this result is physically

untenable and the theory must be modified to handle cases of vanishingly

I small volumes. As we have seen previously, the distribution function given

by Eq. 94 is a possible candidate for such situations.

It is perhaps worthwhile to point out the similiarity of the analysis-

design role played by the Weibull distribution function and that of the familiar

I formula for the maximum bending stress, i.e., 6 = Mc l. We observe that

-the cross-sectional area of an ideal bending member is given by the flexure

formula as A = ZM/od. When the depth d approaches infinity we observe

that the area vanishes. As with the Weibull function, the design problem

extends the flexure formula beyond its region of applicability.

In addition to the problem of size effects, the designer must also

consider the tricky problem of stress concentrations. Fig. 33 illustrates

convincingly the point that strength does not always increase with an increase

in dimensions, and that it is possible to increase the strength by reducing the

I dimensions.
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i
V-D. Material Selection for Minimum Weight Design

In this section, we shall consider the minimum weight design of a

brittle tension member based on a strength criterion. The Weibull distri-

bution function for a tension member is given by Eq. 40. By rewriting Eq.

40, we can express x as a function of the volume, the material constants,

and a specified probability "of fracture, F, thus,

x= xu +x 0 V-1/m [-log(l-F)] 1/rn (118)

where the term in the brackets is always non-negative since the survival

probability (1 - F) is always in the closed interval zero to one. Now, the

weight of a tension member of cross sectional area A and length L is

simply,

W = FLA =pLP/x (119)

where the area is expressed as the external load P divided by the design
stress x. If we eliminate x from Eqs. 118 and 119 and express the volume as
W/, the optimum weight of the tension member can be found from the

following algebraic equation,

1/rn 1
x u(W/P) +x0 I-log(l-F)] (W1) 1 i- -(PL) = 0 (120)

In general, the roots of this equation must be evaluated numerically for each

set of values of the loading index (PL) and the probability of fracture F;

consequently, the comparison of materials must also depend on these para-

meters. For many materials, such as glass and certain ceramics, the zero

probability strength, xu, is zero. Here, Eq. 120 simplifies considerably

and an explicit expression can be found for the optimum weight which enables
one to delineate a merit index which is independent of the loading index (PL)

and the specified fracture probability F. Hence,

1 zr L ./_(rn- 1)
W = 1 -,?~/rL (121)

[0omf(mjl)/ [log (1 - F) 1 /(m-1)
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where the merit index [X0m(m. is found to depend on the weight density

p and the two Weibull constants x and m. For illustrative purposes, the

value of this merit index is tabulated for three materials in Table 9. We

j note that when m4 0 0o, the merit index approaches o'o Ip, the specific tensile

strength of a classical material.
I

Table 9

MERIT INDICES FOR THREE MATERIALS

Material m 0  do

Hydro-Stone Plaster 7.7 1, 680 psi 5.75 x 104

Porcelain-white glazing 16. 2 13, 220 psi 29. 2 x 10 4

Beryllium Oxide 7.25 1 7, 800 psi 31.3 x 104

V-E. Comments on Design and "Rule-of-Thumb"

I Recognizing that the design of a brittle structure is an art and not a

science, the author has searched the literature for various design hints or

rule - of-thumb. The search turned out to be most unrewarding with one

exception - the work by Bell Aerosystems on the feasibility of designing

leading edges using brittle materials. This work has been summarized by

Anthony and Mistretta( 6 1 ) and we shall reproduce most of their section on

Design Philosophy:

1. "The most important ingredient of a design philosophy for brittle

materials is believed to be the recognition of the absence of yielding. When

the stress at any point in a brittle component, no matter how localized,

reaches the limit of material capability, fracture will result. In recognition

of this fact, the design philosophy formulated at Bell consists of the following

five concepts:

(1) Nonredundant attachments permit the determination of loads at

these points, whether the loads are due to externally applied pressures or

jrelative deformations between the leading edge and the wing. If all loads

are known, the part can be designed with confidence.
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(2) Brittle structures cannot be pulled into position during assembly.

I Any misfit which introduces high local stress could cause failure. Hence,
this situation must be avoided.

1 (3) Proper account must be taken of all stress risers due to section

changes, discontinuities, locally applied loadings, etc. Normal analysis of

j. ductile structures under static loadings neglects stress concentration effects

because they are reduced to insignificance by microscopic plastic flow. For

brittle materials this relief is essentiilly absent. Stresses are not relieved

by localized straining.

(4) At some point the refractory nonmetallic component must be

joined to a metallic structure. Since the nonmetal part is used to withstand

extreme temperatures, the joint would be made at a more reasonable

temperature, say 2, 000 F, where superalloys could be used. Thermal

expansion differences could be quite large. If, however, the projections of

all mating metallic and nonmetallic surfaces intersect at a single point,
there will be no changes in the fit of the two parts resulting from differential

thermal expansion. This design rule is based on the fact that while the

dimensions of a structural element change with temperature, all angles

Iremain constant.

(5) Because of the brittleness of the material and the lack of yielding

i capability, the stress concentrations produced by material flaws precipitate

material failure. (The term material flaws refers not to defective materials

j as such, but rather to those macroscopic or submicroscopic items - such as

inclusions, voids, density variations, lattice defects, etc. - which cannot

be detected by available inspection techniques and are an inherent character-

istic of the particular material as produced by present technology. ) Since

the flaws are a random occurrence, the design allowable strength must be

based upon a desired probability of survival under given loading conditions.
The flaw concept appears to be most satisfactory in defining the structural

I performance of brittle materials - particularly, a Weibull statistical

distribution function. The effect of the unknown flaws or stress concentra-

tions within the material may be treated on a statistical basis as an effect

on the allowable stress - that is, allowable strength values are chosen to

ensure a prescribed probability of survival. This procedure requires that
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I
material strength properties be determined statistically by conducting

j tests of a large number of specimens for each experimental condition.

Furthermore, since the presence of other than gross flaws cannot be

j. detected by currently available inspection techniques, it is necessary to

relate allowable stresses to a particular process control procedure in order

j to ensure similarity between the test bar and component material."

The five design concepts are summarized in Table 10.

Table 10

DESIGN WITH BRITTLE MATERIALS

Problem Solution

1. Attachment loads Non-redundant attachments

2. Tolerances and fits Self-aligning and adjustable surfaces

1 3. Stress concentrations Refined stress analysis

4. Thermal expansions Intersection of mating surfaces

j 5. Material flaws Statistically determined strength

In addition to the five concepts by Anthony and Mistretta a numberIof ideas suggested themselves, as this present study progressed, and these

tthoughts are itemized below:

I. Try to change the weakest link behavior of materials by strati-

fying or foaming them.

2. Keep things compressive. It may be possible to make the

technique of prestressing serve the same role in ceramics which it performs

in concrete.

3. Before constructing a prototype in a brittle ceramic, make a
prototype "mock up" out of an inexpensive brittle material like plaster.

4. In certain types of attachments it may be possible to use ductile

inserts which limit the loads transfered to their yield loads. Here, as long

as the transfer forces are bounded, it may not be necessary to know their

exact distribution.
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VI. SUMMARY

Ideally, a structural designer would like to be able to predict the

behavior of a complex prototype structure from a knowledge of the behavior

Sof a unit volume of material. When this cannot be accomplished, it is a
reasonable and practicable compromise to be able to predict structural

j integrity through the use of small physical models or specimens. The common

feature of these two approaches is the necessity of having a scaling law which

relates the strength of the small specimen to the full size structure.

The most successful approach to the description of strength forImaterials which behave in a brittle fashion is a statistical approach. There

are several important implications which attend the use of statistics in

design. First, a statistical input produces a statistical output. Second, the

effort and cost of obtaining data and verifying techniques are several orders

of magnitude greater than that associated with conventional "ductile" design.
Finally, a capability must exist for the consistant production of material

from the same universe. Stated in another way, a distribution function must

Iexist for the material. Unfortunately, there is considerable doubt concerning

this capability for many of the ceramics and cermets of current interest.

A realistic statistical model for the description of brittle rmaterial

strength will probably involve both series and parallel elements. However,J because the series or weakest link behavior appears to be predominant, most

investigators have studied only this model. Within the framework of the

series model, we find many statistical theories, including the famous theory

of Weibull. It has recently been recognized that the statistical strength problem

is a special case of extreme value statistics and the adoption of this new point

of view has served to unify the various weakest link theories.

Almost all of the past work on statistical failure theories has been

Iconcerned with uniaxial stress problems where the tensile stress is the only

reasonable statistical variate. When multi-axial stresses are considered,

j there is no obvious statistical variate. The discovery of a suitable generalized

variate, such as the octahedral stress or perhaps the maximum strain energy,

is probably the most significant hurdle to the prediction of strength in multi-
axial stress problems.
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A small amount of very significant work has been devoted to the studyIof the parallel model. By considering the behavior of large bundles of

filaments in tension, it has been possible to describe the general features

j of the parallel model under very broad assumptions for the characteristics

of the individual filaments. The combination of this work with the series
model could lead to a more effective description of brittle behavior. As a

short range goal, it should be noted that the structural designer would be
happy to compromise for any reasonable and conservative theory which would

predict brittle strength.

I One of the biggest obstacles to the development of satisfactory design

procedures for brittle materials is the dearth of experimental data. Most of

the available tests support the weakest link hypothesis from a qualitative

standpoint. Attempts to verify specific theories quantatively have in the
large been inconclusive. Generally, too few tests were used to properly

Iestimate the distribution parameters. Where great numbers of specimens
were used, either the programs considered only one size specimen or a

distribution function did not exist for the materials considered. It should be
strongly emphasized that the adequacy of a specific theory can only be judgedjin the light of a specific material and manufacturing process. The validity,

of say the Weibull theory, must be ascertained for every material of interest.

There are a number of special problems which manifest themselves
in brittle design. Most of these can be attributed to the difficulties involved

in predicting or producing stress distributions in brittle components. Others

are associated with the statistical nature of the materials. For example, the
familiar situation in stress concentration problems of "strengthening by removal

of material" can also arise in highly variable materials under homogeneous
stress states. Such unusual behavior coupled with the need for high reliability

at low weight, demands that radically different design philosophies be developed.
One such philosophy is suggested by the statistical concept known as the return

Iperiod.

I

I ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

-118 -



I
I REFERENCES

1. Duckworth, W. H., Schwope, A. D., Salmassy, 0. K., Carlson,
R. L., and Schofield, H. Z., "Mechanical Property Tests on Ceramic
Bodies, " WADC Technical Report No. 52-67, March 1952.

2. Nadai, A., "Theories of Strength, " Trans. ASIME, 55, 1933.

1 3. Voigt, W., Ann. Physics, 4, pp. 567-591, 1901.

4. Griffith. A. A., "The Phenomena of Rupture and Flow in Sclids,"
Phil. Trans. Roy. Soc., 221A, p. 163, 1920, The Theory of Rupture,
Proc. Int. Cong. App. M e-i7 Delft. 1, p. 55, 1924.

5. Smekal, A., "Die Festigkeitseigenschaften spr6der K6rper, Erg. d.
exakt Naturwiss, " 15, pp. 106-188, 1936.

6. Inglis, C. E., "Stresses in a Plate Due to the Presence of Cracks
r and Sharp Corners, " Trans. Inst. Naval Architests, 55, Part I, p. 219,

1913.

7. Smekal, A., "The Nature of the Mechanical Strength of Glass, " J. Soc.
Glass Tech., 20, p. 432, 1936.

8. Weibull, W., "Investigations into Strength Properties of Brittle
Materials, " Ing. Vetenskaps Akad., Handlingar, 149, 1938.

9. Smekal, A., "The Influence of Specimen Width on the BreakingI Strength of Sheet Glass, " J. Soc. Glass Tech., 20, p. 449, 1936.

10. Patton, W. R., and Sheulin, T., Bachelor Science Thesis, OhioI State Univ., 1942.

11. Weibull, W., "A Statistical Theory of the Strength of Materials, " Ing.J Vetenskaps Akad., 151, pp. 1-45, 1939.

12. Milligan, L. H., J. Am. Cer. Soc., 36, pp. 159-160, 1953.

13. Bortz, S. A., ARF Project 6918, Report No. 5, Nov. 1959.

14. Davidenkov, N., Shevandin, E., and Wittman, F., "The Influence of

Size on the Brittle Strength of Steel, " J. Appl. Mech., 14, p. 263, 1947.

15. Bortz, S. A., "Effect of Structural Size, " Task 1, Technical Documen-
tary Report No. ASD-TR-61-628, 1962.

16. Parker, E. R., Brittle Behavior of Engineering Structures, John Wiley
and Sons, New York, 1957.

I ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

1 - 119 -



i
I

17. Salmassy, 0. K., Bodine, E. G., Duckworth, W. H. and Manning,
G. K., "Behavior of Brittle State Materials," WADC Tech. Report
53-50, Part II, June 1955.

18. Gumbel, E. J., Statistics of Extremes, Columbia University Press,
New York, 1958.

19. Weibull, W., "A Statistical Distribution Function of Wide Applicabiity,"j J. Appl. Mech., 18, pp. 293-297, 1951.

20. Kao, J. H., "A Graphical Estimation of Mixed Weibull Parameters
in Life Testing of Electron Tubes, " Technometrics, ASQC/ASA, 1,I p. 389, Nov. 1959.

21. Lewis, C. F., "Graphical Solutions to Some Statistical Distributions, "
ASME Publication No. 60-PET-9, September 1960.

22. Epstein, B., "Statistical Aspects of Fracture Problems, " J. Appl.
Physics, 19, pp. 140-147, Feb. 1948.

23. Meyersberg, G., "Effect of Volume and Surface and the Strength
Properties of Materials, " Acta Polytech., Phys. Appl. Math., 2,
p. 2, 1952.

24. Gumbel, E. J., "Statistical Theory of Extreme Values-and Some
Practical Applications, ". National Bureau of Standards, AppI. Math
Series 33, pp. 13-16, Feb. 1954.

25. Weibull, W., Discussion of Weibull's paper, Ref. 19, J. Appl. Mech.,
19, (2), p. 233, 1952.

26. Weil, N. A., and Daniel, I. M., "Studies of the Brittle Behavior offCeramic Materials, " Contract No. AF33(616)-7465, ARF Report No.
8203-19, Task 3, Aug. 1962.

27. Weibull, W., "New Methods for Computing Parameters of Complete
. or Truncated Distributions, " Aero. Res. Inst. Sweden, Report 58, 1955.

28. Rudnick, A., Carlson, R. L., and Manning, G. K., "Investigation
I. of Feasibility of Utilizing Available Heat-Resistant Materials for

Hypersonic Leading Edge Applications, " VI, "Determination and Design
Application of Mechanical Properties of a-re and Coated Graphite,
WADC TR 59-744, July 1960.

29. Wallhaus, R. A., "A Statistical Study of Factors Influencing the
Strength of Glass Fibers, " University of Illinois, Tech. Memo 187,
T and AM Report 217, May 1962.

30. Irwin, G. R., "The Effect of Size Upon Fracturing, " Symp. on Effects
of Temp. on the Brittle Behavior of Metals with Particular Referenceto Low Temperatures, ASTM Special Technical Pub. No. 158, Phila.,
Amer. Soc. Testing Matl., p. 176, 1954.

ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

-120 -



I

31. Weil, N. A. and Daniel, I. M., "Effects of Non-Uniform Stress Fields,"
1963 Final Report of "Studies of the Brittle Behavior of Ceramic
Materials, " Task 3, ARF No. 8203.

32. Weil, N. A. and Daniel, I. M., "Effects of Non-Uniform Stress Fields,"
of "Studies of the Brittle Behavior of Ceramic Materials, " Task 3, Tech.
Doc. Report, ASD-TR-61-628, p. 127, April 1962.

33. Koshal, R. S. and Turner, A. J., "Studies in the Sampling of Cotton
for the Determination of Fibre Properties, " Jour. Textile Inst. Trans.,
21, pp. 325-370, 1930.

34. Weibull, W., "A Survey of Statistical Effects in the Field of Material
Failure, " Appl. Mech. Rev., pp. 449-451, Nov. 1952.

35. Salmassy, 0. K., Duckworth, W. H., and Schwope, A. D., "Behavior
of Brittle-State Materials, "1 WADC Technical Report 53-50, Part I,
June 1955.

36. Hoel, P. G., Introduction to Mathematical Statistics, John Wiley
and Sons, London, 1954.

37. Weibull, W., "The Phenomenon of Rupture in Solids, " Ing. Vetenskaps
Akad., Handl., Report 153, 1939.

38. Richards, C. W., "Size Effect in the Tension Test of Mild Steel,"

ASTM Preprint No. 84, 1954.

39. Bortz, S. A. and Weil, N. A., "Effect of Structural Size: 'The Zero
Strength, I "Task 1, 'Studies of the Brittle Behavior of Ceramic
Materials, " ASD-TR-61-628, Part II, April 1963.

I 40. Peirce, F. T., "Tensile Tests for Cotton Yarns V. 'The Weakest
Link. ' Theorems on the Strength of Long and of Composite Specimens,"
J. Textile Inst., Trans., 17, p. 355, 1926.

41. Tippett, L. H. C., "On the Extreme Individuals and the Range of
Samples Taken from a Normal Population, " Biometrika, 17, Pts.1 3 and 4, pp. 364-387, 1925.

42. Epstein, B., "Application of the Theory of Extreme Values in Fracture
I Problems," J. Am., Stat. Assoc., 43, pp. 403-412, Sept. 1948.

43. Epstein, B. and Brooks, H., "The Theory of Extreme Values and
its Implications in the Study of the Dielectric Strength of Paper
Capacitors," J. Appl. Phys., 19, pp. 544-550, 1948.

44. Mugele, R. A., Discussion of Weibull's Paper, Ref. 19, J. Appl.
I Mech., p. 233, June 1962.

I ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

I - 121 -



I

45. Rosin, P. and Rammler, E., "Feinheit und Struktur des Kohlenstaubs,"
j Zeitschrift des Vereines deutsher Ingenieure, 71, pp. 1-7, 197.

46. Van Evan, M. J., "Skew Frequency Curves, " Proc. Kon. Akad. v.

I Wetens, 19, p. 670, 1917.

47. Mugele, R. A. and Evans, H. D., "Droplet Size Distributions in
Sprays, " Industrial and Engineering Chemistry, 43, pp. 1317-1324,
1951.

48. Kies, J. A., "The Strength of Glass, " NRL Report 5098, April 3, 1958.

49. Kontorova, T. A., J. Tech. Phys. U.S.S.R., 10, p. 886, 1940.

50. Frenkel, J. I. and Kontorova, T. A., "A Statistical Theory of the
Brittle Strength of Real Crystals, " J. Phys. U.S.S.R., 7, p. 108,
1943.

51. Fisher, J. C. and Hollomon, J. H., "A Statistical Theory of Fracture,j Trans. AIME, Inst. of Metal Div., 171, p. 380, 1950.

52. Ruark, A. E. and Rosen, N., 'tatistical kffects in the Testing of
Materials, " NRL Report No. 0-2191.

53. Tucker, J., "The Compressive Strength Dispersion of Materials
with Applications, " J. Franklin Inst., 204, p. 751, 1927; 'Effect of
Dimensions of Specimens Upon the Preci'son of Strength Data, " Proc.
ASTM, 45, p. 952, 1945; "The Maximum Stresses Present at Failure
of Brittr" Materials, " Proc. ASTM, 45, p. 961, 1945.

54. Frankel, J. P., "Relative Strengths of Portland Cement Motar in
Bending Under Various Loading Conditions," J. Am. Concrete Inst.,
45, p. 21, 1948.

55. Daniels, H. E., "The Statistical Theory of the Strength of Bundles of
Threads, " Part I, Proc. Roy. Soc., London, 183, pp. 405-435, 1945.

56. Rudnick, A., Hunter, A. R., and Holden, F. C., "An Analysis of
the Diametral-Compression Test" presented at the Sixty-Fifth Annual
Meeting of ASTM, New York, June 24-29, 1962.

57. Bortz, S. A. and Lund, H. H., "The Brittle Ring Test, " Proc. of
Conference on Mechanical Properties of Engineering Ceramics. Edited
by Kriegel and Palmour - Interscience Publishers, N. Y., 1961.

58. Durelli, A. J., Morse, S., and Parks, V., "The Theta Specimen for
Determining Tensile Strength of Brittle Materials, " Materials Research
and Standards, ASTM, pp. 114-117, Feb. 1962.I

j ARMOUR RESEARCH FOUNDATION OF ILLINOIS INSTITUTE OF TECHNOLOGY

S- 122 -



I

59. Bortz, S. A., "A Means of Obtaining Axial Tensionfrom a BendingTeiit, ' liT Masters Thesis, 1963. The author is grateful to Mr. Bortzfor allowing him to use certain portions of his thesis in this review.

1 60. Fr,)ht, M,. i\., Stlnglu, 0 -MateriaLs, Ronald Press Company, New'Vo."k, p. 173, 1951.:

61. An'honf-, F. M. and Mistretta, A. L., "Leading Edge Design with
Brittle Materials,"I Paper No. 61-151 -1845, Joint IAS-ARS Mtg.,
Los Angeles, June 1961.

!
i

I

I
i
I

I ARMC'UR RESEARCH FOUNDA."ION OF ILLINOIS INSTtTUTE OF TECHNOLOGY

I - :,43 -


